2ch勢い総合ランキング

「生活」カテゴリ > 「放射能」板

【ガイガー】インスペクター+統計スレ2 (192)

【pc】

【ガイガー】インスペクター+統計スレ2 (192)


1 名無しに影響はない</b>(やわらか銀行)<b>
2012/06/10(日) 01:41:20.41 ID:nxFUM7TN

前スレがとつぜん消えてしまったのでたてました。
インスペクター+統計スレ2
統計データを書き込むスレです。


【ガイガー】インスペクター+統計スレ2

【ガイガー】インスペクター+統計スレ2 (192)


53 名無しに影響はない</b>(栃木県)<b>
2012/07/02(月) 20:25:32.54 ID:w0VmVgRK

3.補足コメント
最後に糊台の測定を仕掛けて朝まで寝てしまったのでこんな結果になりました。
39.52239 - 38.57198 = 0.9504089 CPM (0.447 Bq)
比重 1.02 g/cm3 受光深さ 0.35 cm 受光容積 7cm3 (7g)
62.3 Bq/kg

以下、分散分析に使っている群番号です。エディタで「,1」を書き換えて使います。
1. n=32 糊台
g <- c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

2. n=30 小豆島そうめん 2013.11/Z
g <- c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

3. n=30 糊台
g <- c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

4. n=37 小豆島そうめん 2013.11/Z
g <- c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

5. n=459 糊台
g <- c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)


54 名無しに影響はない</b>(栃木県)<b>
2012/07/02(月) 21:41:23.43 ID:w0VmVgRK

1.測定対象
「小豆島ひやむぎ 2014.1/AB」(1.7*8*18 cm, 250g)の分析

2.測定結果
1. n=30 糊台
x <- c( 42, 23, 36, 29, 35, 38, 38, 45, 41, 47, 31, 36, 53, 35, 41, 37, 49, 39, 38, 57, 45, 38, 38, 31, 44, 37, 43, 45, 40, 54)

2. n=30 小豆島ひやむぎ 2014.1/AB
x <- c( 37, 33, 43, 46, 48, 29, 39, 42, 44, 40, 50, 53, 24, 48, 44, 34, 44, 41, 32, 36, 35, 33, 38, 43, 37, 34, 36, 47, 40, 46)

3. n=30 糊台
x <- c( 28, 41, 35, 42, 50, 42, 47, 52, 38, 35, 34, 44, 43, 33, 39, 40, 38, 43, 60, 41, 39, 47, 33, 41, 34, 34, 33, 29, 40, 36)

4. n=35 小豆島ひやむぎ 2014.1/AB
x <- c( 43, 42, 37, 34, 51, 36, 45, 37, 43, 42, 34, 33, 50, 37, 41, 43, 39, 47, 39, 47, 38, 44, 35, 48, 39, 31, 47, 50, 38, 38, 48, 39, 31, 54, 39)

5. n=31 糊台
x <- c( 36, 44, 45, 31, 42, 40, 40, 51, 42, 41, 34, 48, 26, 33, 37, 41, 35, 48, 36, 35, 41, 41, 39, 35, 37, 53, 33, 43, 43, 39, 46)


55 名無しに影響はない</b>(栃木県)<b>
2012/07/02(月) 21:42:03.12 ID:w0VmVgRK

4. データ貼り付け
全体の分析
x <- c( 42, 23, 36, 29, 35, 38, 38, 45, 41, 47, 31, 36, 53, 35, 41, 37, 49, 39, 38, 57, 45, 38, 38, 31, 44, 37, 43, 45, 40, 54 ,
37, 33, 43, 46, 48, 29, 39, 42, 44, 40, 50, 53, 24, 48, 44, 34, 44, 41, 32, 36, 35, 33, 38, 43, 37, 34, 36, 47, 40, 46 ,
28, 41, 35, 42, 50, 42, 47, 52, 38, 35, 34, 44, 43, 33, 39, 40, 38, 43, 60, 41, 39, 47, 33, 41, 34, 34, 33, 29, 40, 36 ,
43, 42, 37, 34, 51, 36, 45, 37, 43, 42, 34, 33, 50, 37, 41, 43, 39, 47, 39, 47, 38, 44, 35, 48, 39, 31, 47, 50, 38, 38, 48, 39, 31, 54, 39 ,
36, 44, 45, 31, 42, 40, 40, 51, 42, 41, 34, 48, 26, 33, 37, 41, 35, 48, 36, 35, 41, 41, 39, 35, 37, 53, 33, 43, 43, 39, 46)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 40.16667
> var(x)
[1] 42.2043
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.2556, 第1自由度 = 4, 第2自由度 = 151, P値 = 0.9059
有意ではない。群間の差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.212, 自由度 = 4, P値 = 0.6968
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.2876, 第1自由度 = 4.000, 第2自由度 = 74.568, P値 = 0.8852
有意ではない。群間の差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.2820513 1.282051
25 5 3.2051282 4.487179
30 22 14.1025641 18.589744
35 48 30.7692308 49.358974
40 43 27.5641026 76.923077
45 22 14.1025641 91.025641
50 12 7.6923077 98.717949
55 1 0.6410256 99.358974
60 1 0.6410256 100.000000
>


56 名無しに影響はない</b>(栃木県)<b>
2012/07/02(月) 21:42:52.16 ID:w0VmVgRK

BGと試料の比較
x <- c( 42, 23, 36, 29, 35, 38, 38, 45, 41, 47, 31, 36, 53, 35, 41, 37, 49, 39, 38, 57, 45, 38, 38, 31, 44, 37, 43, 45, 40, 54 ,
37, 33, 43, 46, 48, 29, 39, 42, 44, 40, 50, 53, 24, 48, 44, 34, 44, 41, 32, 36, 35, 33, 38, 43, 37, 34, 36, 47, 40, 46 ,
28, 41, 35, 42, 50, 42, 47, 52, 38, 35, 34, 44, 43, 33, 39, 40, 38, 43, 60, 41, 39, 47, 33, 41, 34, 34, 33, 29, 40, 36 ,
43, 42, 37, 34, 51, 36, 45, 37, 43, 42, 34, 33, 50, 37, 41, 43, 39, 47, 39, 47, 38, 44, 35, 48, 39, 31, 47, 50, 38, 38, 48, 39, 31, 54, 39 ,
36, 44, 45, 31, 42, 40, 40, 51, 42, 41, 34, 48, 26, 33, 37, 41, 35, 48, 36, 35, 41, 41, 39, 35, 37, 53, 33, 43, 43, 39, 46)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.3635, 第1自由度 = 1, 第2自由度 = 154, P値 = 0.5475
有意ではない。試料とバックグラウンドの差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.3448, 自由度 = 1, P値 = 0.5571
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.3719, 第1自由度 = 1.000, 第2自由度 = 143.374, P値 = 0.5429
有意ではない。試料とバックグラウンドの差異は不明。

>



57 名無しに影響はない</b>(栃木県)<b>
2012/07/02(月) 21:43:50.04 ID:w0VmVgRK

繰り返しによる影響

1. n = 91 BG 繰り返し数 =3
x <- c( 42, 23, 36, 29, 35, 38, 38, 45, 41, 47, 31, 36, 53, 35, 41, 37, 49, 39, 38, 57, 45, 38, 38, 31, 44, 37, 43, 45, 40, 54 ,
28, 41, 35, 42, 50, 42, 47, 52, 38, 35, 34, 44, 43, 33, 39, 40, 38, 43, 60, 41, 39, 47, 33, 41, 34, 34, 33, 29, 40, 36 ,
36, 44, 45, 31, 42, 40, 40, 51, 42, 41, 34, 48, 26, 33, 37, 41, 35, 48, 36, 35, 41, 41, 39, 35, 37, 53, 33, 43, 43, 39, 46)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 39.9011
> var(x)
[1] 44.75678
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0377, 第1自由度 = 2, 第2自由度 = 88, P値 = 0.963
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.3853, 自由度 = 2, P値 = 0.5002
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0332, 第1自由度 = 2.000, 第2自由度 = 57.886, P値 = 0.9674
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.098901 1.098901
25 4 4.395604 5.494505
30 12 13.186813 18.681319
35 28 30.769231 49.450549
40 27 29.670330 79.120879
45 11 12.087912 91.208791
50 6 6.593407 97.802198
55 1 1.098901 98.901099
60 1 1.098901 100.000000
>


58 名無しに影響はない</b>(栃木県)<b>
2012/07/02(月) 21:44:54.30 ID:w0VmVgRK

2. n = 65 小豆島ひやむぎ 2014.1/AB 繰り返し数 =2
x <- c( 37, 33, 43, 46, 48, 29, 39, 42, 44, 40, 50, 53, 24, 48, 44, 34, 44, 41, 32, 36, 35, 33, 38, 43, 37, 34, 36, 47, 40, 46 ,
43, 42, 37, 34, 51, 36, 45, 37, 43, 42, 34, 33, 50, 37, 41, 43, 39, 47, 39, 47, 38, 44, 35, 48, 39, 31, 47, 50, 38, 38, 48, 39, 31, 54, 39)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 40.53846
> var(x)
[1] 39.03365
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.6406, 第1自由度 = 1, 第2自由度 = 63, P値 = 0.4265
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.404, 自由度 = 1, P値 = 0.525
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.6293, 第1自由度 = 1.000, 第2自由度 = 58.741, P値 = 0.4308
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.538462 1.538462
25 1 1.538462 3.076923
30 10 15.384615 18.461538
35 20 30.769231 49.230769
40 16 24.615385 73.846154
45 11 16.923077 90.769231
50 6 9.230769 100.000000
>


59 名無しに影響はない</b>(栃木県)<b>
2012/07/02(月) 21:45:54.19 ID:w0VmVgRK

BGと試料の比較

1. n = 91 BG 繰り返し数 =3
gr1 <- c( 42, 23, 36, 29, 35, 38, 38, 45, 41, 47, 31, 36, 53, 35, 41, 37, 49, 39, 38, 57, 45, 38, 38, 31, 44, 37, 43, 45, 40, 54 ,
28, 41, 35, 42, 50, 42, 47, 52, 38, 35, 34, 44, 43, 33, 39, 40, 38, 43, 60, 41, 39, 47, 33, 41, 34, 34, 33, 29, 40, 36 ,
36, 44, 45, 31, 42, 40, 40, 51, 42, 41, 34, 48, 26, 33, 37, 41, 35, 48, 36, 35, 41, 41, 39, 35, 37, 53, 33, 43, 43, 39, 46)

2. n = 65 小豆島ひやむぎ 2014.1/AB 繰り返し数 =2
gr2 <- c( 37, 33, 43, 46, 48, 29, 39, 42, 44, 40, 50, 53, 24, 48, 44, 34, 44, 41, 32, 36, 35, 33, 38, 43, 37, 34, 36, 47, 40, 46 ,
43, 42, 37, 34, 51, 36, 45, 37, 43, 42, 34, 33, 50, 37, 41, 43, 39, 47, 39, 47, 38, 44, 35, 48, 39, 31, 47, 50, 38, 38, 48, 39, 31, 54, 39)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -0.6029, 自由度 = 154, P値 = 0.5475
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.725847 1.451122
標本推定値:
平均値x 平均値y
39.90110 40.53846
有意。シリョウトバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -0.6098, 自由度 = 143.374, P値 = 0.5429
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.703268 1.428542
標本推定値:
平均値x 平均値y
39.90110 40.53846
有意。シリョウトバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.1466, 第1自由度 = 90, 第2自由度 = 64, P値 = 0.5658
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.7197484 1.7944198
標本推定値:
分散比
1.146620
有意。分散が異なるので(Welchの方法)を使用する。

>


60 名無しに影響はない</b>(栃木県)<b>
2012/07/02(月) 21:47:02.90 ID:w0VmVgRK

3.補足コメント
40.53846 - 39.90110 = 0.6373596 CPM (0.300Bq)
比重 1.02 受光深さ 0.35cm 受光容積 7cm3(7g)
41.8 Bq/kg


61 名無しに影響はない</b>(栃木県)<b>
2012/07/02(月) 22:02:57.32 ID:w0VmVgRK

連投禁止とサイズ制限で一部分しか掲載していないけど
近所で購入できる麺類(スパゲティ・ラーメンを含む)は、全滅っぽい。

春に生まれた子ヌコ様の頭がよくなってきたのか、人間の食品を略奪して食べるようになりました。
掲載していないけど、20Bq/kg という結果になったうどんを子ヌコ様と親ヌコ様が合同で略奪してゆきました。
下痢してくれました。子ヌコ様は、まだ便所のしつけができていません。現在はパソコン用机の下で用をたしています。
親ヌコ様は、隣家のヌコと喧嘩して、負けて、便所を取り上げられてしまったのです。それで、パソコンの下で用をたしています。

ヌコ様には、今後とも毒見方として活躍してもらう予定です。

62 名無しに影響はない</b>(やわらか銀行)<b>
2012/07/04(水) 19:32:28.64 ID:XOjdnWtN

61
猫用トイレは複数設置したほうがよいよ。
猫砂やエサも汚染しているかもしれない。



63 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 20:35:59.99 ID:5hLmCnjK

62
>猫砂やエサも汚染しているかもしれない。
猫砂は、猫の糞尿がこびりついているので、バッチシ汚染されている。
エサは、100-600Bq/kg なんて数値をヤツ(過去の分析値参照)を食わせているので、バッチシ汚染されている。
今回は、捕まえてきたモグラの食べ残しを分析した。
ディズニーは尻尾も食ってしまうので、分析不可。虫も蛙も全部食ってしまうのが我が家のヌコ様。

1.測定対象
「2012.07.04入手 モグラの両手足 4.9wg 2.7dg」の分析

2.測定結果
1. n=41 糊台
x <- c( 36,33,36,41,31,33,28,40,36,33,36,39,40,44,36,41,44,37,44,38,40,49,39,30,38,35,40,34,27,36,33,32,29,45,42,43,36,51,38,35,35)

2. n=31 2012.07.04入手 モグラの両手足 4.9wg 2.7dg
x <- c( 42,37,36,45,38,33,34,39,35,41,36,39,33,38,33,35,44,37,38,45,46,42,41,41,41,38,41,37,26,46,36)

3. n=30 糊台
x <- c( 31,45,35,36,29,41,38,29,46,48,38,48,33,39,32,39,37,40,48,38,31,31,36,35,40,44,44,42,29,38)

4. n=31 2012.07.04入手 モグラの両手足 4.9wg 2.7dg
x <- c( 31,37,42,27,35,41,34,38,40,37,34,38,29,40,36,37,39,39,36,34,42,32,32,42,38,39,38,37,42,37,44)

5. n=32 糊台
x <- c( 35,37,27,39,27,39,43,43,41,37,34,46,39,38,44,40,31,29,31,31,35,31,34,37,41,37,44,37,39,33,32,37)

64 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 20:37:19.65 ID:5hLmCnjK

4. データ貼り付け
全体の分析
x <- c( 36,33,36,41,31,33,28,40,36,33,36,39,40,44,36,41,44,37,44,38,40,49,39,30,38,35,40,34,27,36,33,32,29,45,42,43,36,51,38,35,35 ,
42,37,36,45,38,33,34,39,35,41,36,39,33,38,33,35,44,37,38,45,46,42,41,41,41,38,41,37,26,46,36 ,
31,45,35,36,29,41,38,29,46,48,38,48,33,39,32,39,37,40,48,38,31,31,36,35,40,44,44,42,29,38 ,
31,37,42,27,35,41,34,38,40,37,34,38,29,40,36,37,39,39,36,34,42,32,32,42,38,39,38,37,42,37,44 ,
35,37,27,39,27,39,43,43,41,37,34,46,39,38,44,40,31,29,31,31,35,31,34,37,41,37,44,37,39,33,32,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 37.46061
> var(x)
[1] 24.79874
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.777, 第1自由度 = 4, 第2自由度 = 160, P値 = 0.5417
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 5.1269, 自由度 = 4, P値 = 0.2745
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.8445, 第1自由度 = 4.000, 第2自由度 = 78.464, P値 = 0.5012
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 12 7.2727273 7.272727
30 31 18.7878788 26.060606
35 69 41.8181818 67.878788
40 40 24.2424242 92.121212
45 12 7.2727273 99.393939
50 1 0.6060606 100.000000
>


65 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 20:38:13.09 ID:5hLmCnjK

BGと試料の比較
x <- c( 36,33,36,41,31,33,28,40,36,33,36,39,40,44,36,41,44,37,44,38,40,49,39,30,38,35,40,34,27,36,33,32,29,45,42,43,36,51,38,35,35 ,
42,37,36,45,38,33,34,39,35,41,36,39,33,38,33,35,44,37,38,45,46,42,41,41,41,38,41,37,26,46,36 ,
31,45,35,36,29,41,38,29,46,48,38,48,33,39,32,39,37,40,48,38,31,31,36,35,40,44,44,42,29,38 ,
31,37,42,27,35,41,34,38,40,37,34,38,29,40,36,37,39,39,36,34,42,32,32,42,38,39,38,37,42,37,44 ,
35,37,27,39,27,39,43,43,41,37,34,46,39,38,44,40,31,29,31,31,35,31,34,37,41,37,44,37,39,33,32,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.3157, 第1自由度 = 1, 第2自由度 = 163, P値 = 0.575
有意ではない。試料とバックグラウンドの差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 3.7238, 自由度 = 1, P値 = 0.05364
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.3529, 第1自由度 = 1.000, 第2自由度 = 150.522, P値 = 0.5534
有意ではない。試料とバックグラウンドの差異は不明。

>


66 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 20:39:02.74 ID:5hLmCnjK

繰り返しによる影響

1. n = 103 BG 繰り返し数 =3
x <- c( 36,33,36,41,31,33,28,40,36,33,36,39,40,44,36,41,44,37,44,38,40,49,39,30,38,35,40,34,27,36,33,32,29,45,42,43,36,51,38,35,35 ,
31,45,35,36,29,41,38,29,46,48,38,48,33,39,32,39,37,40,48,38,31,31,36,35,40,44,44,42,29,38 ,
35,37,27,39,27,39,43,43,41,37,34,46,39,38,44,40,31,29,31,31,35,31,34,37,41,37,44,37,39,33,32,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 37.29126
> var(x)
[1] 28.83590
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.611, 第1自由度 = 2, 第2自由度 = 100, P値 = 0.5448
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.7711, 自由度 = 2, P値 = 0.6801
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.6111, 第1自由度 = 2.000, 第2自由度 = 63.287, P値 = 0.5459
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 9 8.7378641 8.737864
30 21 20.3883495 29.126214
35 40 38.8349515 67.961165
40 24 23.3009709 91.262136
45 8 7.7669903 99.029126
50 1 0.9708738 100.000000
>


67 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 20:39:49.41 ID:5hLmCnjK

2. n = 62 2012.07.04入手 モグラの両手足 4.9wg 2.7dg 繰り返し数 =2
x <- c( 42,37,36,45,38,33,34,39,35,41,36,39,33,38,33,35,44,37,38,45,46,42,41,41,41,38,41,37,26,46,36 ,
31,37,42,27,35,41,34,38,40,37,34,38,29,40,36,37,39,39,36,34,42,32,32,42,38,39,38,37,42,37,44)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 37.74194
> var(x)
[1] 18.32575
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.8895, 第1自由度 = 1, 第2自由度 = 60, P値 = 0.1744
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.3624, 自由度 = 1, P値 = 0.5471
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.8895, 第1自由度 = 1.000, 第2自由度 = 59.276, P値 = 0.1744
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 3 4.838710 4.83871
30 10 16.129032 20.96774
35 29 46.774194 67.74194
40 16 25.806452 93.54839
45 4 6.451613 100.00000
>


68 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 20:40:33.67 ID:5hLmCnjK

BGと試料の比較

1. n = 103 BG 繰り返し数 =3
gr1 <- c( 36,33,36,41,31,33,28,40,36,33,36,39,40,44,36,41,44,37,44,38,40,49,39,30,38,35,40,34,27,36,33,32,29,45,42,43,36,51,38,35,35 ,
31,45,35,36,29,41,38,29,46,48,38,48,33,39,32,39,37,40,48,38,31,31,36,35,40,44,44,42,29,38 ,
35,37,27,39,27,39,43,43,41,37,34,46,39,38,44,40,31,29,31,31,35,31,34,37,41,37,44,37,39,33,32,37)

2. n = 62 2012.07.04入手 モグラの両手足 4.9wg 2.7dg 繰り返し数 =2
gr2 <- c( 42,37,36,45,38,33,34,39,35,41,36,39,33,38,33,35,44,37,38,45,46,42,41,41,41,38,41,37,26,46,36 ,
31,37,42,27,35,41,34,38,40,37,34,38,29,40,36,37,39,39,36,34,42,32,32,42,38,39,38,37,42,37,44)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -0.5618, 自由度 = 163, P値 = 0.575
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.034599 1.133253
標本推定値:
平均値x 平均値y
37.29126 37.74194
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -0.5941, 自由度 = 150.522, P値 = 0.5534
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -1.949635 1.048288
標本推定値:
平均値x 平均値y
37.29126 37.74194
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.5735, 第1自由度 = 102, 第2自由度 = 61, P値 = 0.05602
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.9882314 2.4411640
標本推定値:
分散比
1.573518
有意。分散が異なるので(Welchの方法)を使用する。

>


69 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 20:41:20.91 ID:5hLmCnjK

3.補足コメント
37.74194 - 37.29126 = 0.4506798 CPM(0.211 Bq)

0.211 * 1000 / 4.9 = 43.2 Bq/wkg
0.211 * 1000 / 2.7 = 78.5 Bq/dkg


70 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 20:42:49.78 ID:5hLmCnjK

略号の解説
wkg, wg 湿重量 
dkg, dg 乾重量
の意味で使っています。


71 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 21:35:29.90 ID:5hLmCnjK

1.測定対象
「栃木産梅(畑B) 42.1wg 8.7dg 2012.06.21収穫」の分析
40度10日間乾燥。

2.測定結果
1. n=35 糊台
x <- c( 39,40,34,38,35,41,39,45,45,42,27,37,38,31,34,42,27,42,39,39,35,36,27,35,38,30,31,36,47,57,47,31,41,42,45)

2. n=32 栃木産梅(畑B) 42.1wg 8.7dg 2012.06.21収穫
x <- c( 51,40,45,67,52,40,51,50,44,56,45,43,38,45,57,42,47,56,64,50,50,53,39,40,49,48,44,50,53,39,49,50)

3. n=30 糊台
x <- c( 44,43,41,41,36,32,29,39,36,39,38,43,29,40,35,38,31,38,29,39,40,36,35,46,46,30,36,28,42,46)

4. n=31 栃木産梅(畑B) 42.1wg 8.7dg 2012.06.21収穫
x <- c( 55,40,49,50,51,46,49,37,56,56,58,52,35,44,45,53,49,47,43,60,45,56,51,43,46,42,40,47,59,43,49)

5. n=31 糊台
x <- c( 29,35,39,39,46,46,34,39,50,28,44,46,36,39,31,40,44,35,35,32,40,50,54,43,34,37,40,32,32,45,36)


72 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 21:36:17.65 ID:5hLmCnjK

4. データ貼り付け
全体の分析
x <- c( 39,40,34,38,35,41,39,45,45,42,27,37,38,31,34,42,27,42,39,39,35,36,27,35,38,30,31,36,47,57,47,31,41,42,45 ,
51,40,45,67,52,40,51,50,44,56,45,43,38,45,57,42,47,56,64,50,50,53,39,40,49,48,44,50,53,39,49,50 ,
44,43,41,41,36,32,29,39,36,39,38,43,29,40,35,38,31,38,29,39,40,36,35,46,46,30,36,28,42,46 ,
55,40,49,50,51,46,49,37,56,56,58,52,35,44,45,53,49,47,43,60,45,56,51,43,46,42,40,47,59,43,49 ,
29,35,39,39,46,46,34,39,50,28,44,46,36,39,31,40,44,35,35,32,40,50,54,43,34,37,40,32,32,45,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 42.20126
> var(x)
[1] 64.44025
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 24.1031, 第1自由度 = 4, 第2自由度 = 154, P値 = 1.694e-15
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.9984, 自由度 = 4, P値 = 0.736
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 23.3877, 第1自由度 = 4.000, 第2自由度 = 76.715, P値 = 1.155e-12
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 9 5.6603774 5.660377
30 15 9.4339623 15.094340
35 40 25.1572327 40.251572
40 35 22.0125786 62.264151
45 29 18.2389937 80.503145
50 18 11.3207547 91.823899
55 10 6.2893082 98.113208
60 2 1.2578616 99.371069
65 1 0.6289308 100.000000
>


73 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 21:37:04.07 ID:5hLmCnjK

BGと試料の比較
x <- c( 39,40,34,38,35,41,39,45,45,42,27,37,38,31,34,42,27,42,39,39,35,36,27,35,38,30,31,36,47,57,47,31,41,42,45 ,
51,40,45,67,52,40,51,50,44,56,45,43,38,45,57,42,47,56,64,50,50,53,39,40,49,48,44,50,53,39,49,50 ,
44,43,41,41,36,32,29,39,36,39,38,43,29,40,35,38,31,38,29,39,40,36,35,46,46,30,36,28,42,46 ,
55,40,49,50,51,46,49,37,56,56,58,52,35,44,45,53,49,47,43,60,45,56,51,43,46,42,40,47,59,43,49 ,
29,35,39,39,46,46,34,39,50,28,44,46,36,39,31,40,44,35,35,32,40,50,54,43,34,37,40,32,32,45,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 96.791, 第1自由度 = 1, 第2自由度 = 157, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.5446, 自由度 = 1, P値 = 0.4605
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 93.4207, 第1自由度 = 1.000, 第2自由度 = 124.707, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

>


74 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 21:37:47.11 ID:5hLmCnjK

繰り返しによる影響

1. n = 96 BG 繰り返し数 =3
x <- c( 39,40,34,38,35,41,39,45,45,42,27,37,38,31,34,42,27,42,39,39,35,36,27,35,38,30,31,36,47,57,47,31,41,42,45 ,
44,43,41,41,36,32,29,39,36,39,38,43,29,40,35,38,31,38,29,39,40,36,35,46,46,30,36,28,42,46 ,
29,35,39,39,46,46,34,39,50,28,44,46,36,39,31,40,44,35,35,32,40,50,54,43,34,37,40,32,32,45,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.19792
> var(x)
[1] 37.38147
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.4881, 第1自由度 = 2, 第2自由度 = 93, P値 = 0.6154
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.2469, 自由度 = 2, P値 = 0.5361
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.4993, 第1自由度 = 2.000, 第2自由度 = 61.582, P値 = 0.6094
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 9 9.375000 9.37500
30 15 15.625000 25.00000
35 35 36.458333 61.45833
40 21 21.875000 83.33333
45 12 12.500000 95.83333
50 3 3.125000 98.95833
55 1 1.041667 100.00000
>


75 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 21:38:32.75 ID:5hLmCnjK

2. n = 63 栃木産梅(畑B) 42.1wg 8.7dg 2012.06.21収穫 繰り返し数 =2
x <- c( 51,40,45,67,52,40,51,50,44,56,45,43,38,45,57,42,47,56,64,50,50,53,39,40,49,48,44,50,53,39,49,50 ,
55,40,49,50,51,46,49,37,56,56,58,52,35,44,45,53,49,47,43,60,45,56,51,43,46,42,40,47,59,43,49)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 48.30159
> var(x)
[1] 44.3108
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0026, 第1自由度 = 1, 第2自由度 = 61, P値 = 0.9598
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.1834, 自由度 = 1, P値 = 0.6684
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0026, 第1自由度 = 1.000, 第2自由度 = 60.872, P値 = 0.9597
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
35 5 7.936508 7.936508
40 14 22.222222 30.158730
45 17 26.984127 57.142857
50 15 23.809524 80.952381
55 9 14.285714 95.238095
60 2 3.174603 98.412698
65 1 1.587302 100.000000
>



76 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 21:39:19.09 ID:5hLmCnjK

BGと試料の比較

1. n = 96 BG 繰り返し数 =3
gr1 <- c( 39,40,34,38,35,41,39,45,45,42,27,37,38,31,34,42,27,42,39,39,35,36,27,35,38,30,31,36,47,57,47,31,41,42,45 ,
44,43,41,41,36,32,29,39,36,39,38,43,29,40,35,38,31,38,29,39,40,36,35,46,46,30,36,28,42,46 ,
29,35,39,39,46,46,34,39,50,28,44,46,36,39,31,40,44,35,35,32,40,50,54,43,34,37,40,32,32,45,36)

2. n = 63 栃木産梅(畑B) 42.1wg 8.7dg 2012.06.21収穫 繰り返し数 =2
gr2 <- c( 51,40,45,67,52,40,51,50,44,56,45,43,38,45,57,42,47,56,64,50,50,53,39,40,49,48,44,50,53,39,49,50 ,
55,40,49,50,51,46,49,37,56,56,58,52,35,44,45,53,49,47,43,60,45,56,51,43,46,42,40,47,59,43,49)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -9.8382, 自由度 = 157, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -12.132149 -8.075192
標本推定値:
平均値x 平均値y
38.19792 48.30159
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -9.6654, 自由度 = 124.707, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -12.172576 -8.034765
標本推定値:
平均値x 平均値y
38.19792 48.30159
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8436, 第1自由度 = 95, 第2自由度 = 62, P値 = 0.4507
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5287648 1.3165316
標本推定値:
分散比
0.8436197
有意。分散が異なるので(Welchの方法)を使用する。

>


77 名無しに影響はない</b>(栃木県)<b>
2012/07/13(金) 21:40:45.15 ID:5hLmCnjK

3.補足コメント
48.30159 - 38.19792 = 10.10367 CPM (4.75 Bq)
4.75 * 1000 / 42.1 =112 Bq/wkg
4.75 * 1000 / 8.7 = 545 Bq/dkg
果肉と種と果皮をそのまま乾燥させて測定した。又β線は1cm以上届かない(実測では7mm)。つまり、種の反対側の放射線は測定できない。よって、上記数値の2倍の大きさが測定値となる。
乾重量 8.7g, 湿重量 42.1gより、水分20%。
水分 90.1% ( http://www.tukeru.com/knowledge/knowledge_51.htm )
カリウム 290mg/100g ( http://www.tukeru.com/knowledge/knowledge_51.htm )より8.96Bq/wkg


78 名無しに影響はない</b>(栃木県)<b>
2012/07/14(土) 20:14:29.49 ID:gi1ydHVU

1.測定対象
「栃木県内の水田内麦栽培地 6条大麦 2012.06.08収穫 40度1週間乾燥 3.9g」の分析

2.測定結果
1. n=30 糊台
x <- c( 38,42,27,41,42,48,42,44,34,41,28,45,46,36,26,33,37,36,37,37,39,54,30,29,31,28,43,34,41,45)

2. n=44 2012.06.08収穫 栃木県内の水田内麦栽培地 6条大麦 40度1週間乾燥 3.9g
x <- c( 46,39,40,32,41,51,47,47,49,44,40,47,48,37,30,29,48,50,30,46,43,31,40,31,48,31,26,45,41,35,39,41,44,46,44,29,43,49,46,37,44,32,32,48)

3. n=30 糊台
x <- c( 36,34,50,46,44,40,40,33,37,37,44,52,40,52,40,44,31,36,40,32,38,29,33,42,35,48,43,45,38,32)

4. n=31 2012.06.08収穫 栃木県内の水田内麦栽培地 6条大麦 40度1週間乾燥 3.9g
x <- c( 55,40,32,43,43,34,35,22,27,28,38,39,31,32,39,45,43,40,44,38,33,51,41,34,38,43,47,37,47,37,37)

5. n=36 糊台
x <- c( 42,47,48,44,37,41,39,30,30,25,35,36,39,37,32,35,39,39,51,37,48,48,42,34,39,46,38,51,41,36,39,29,38,33,37,36)



79 名無しに影響はない</b>(栃木県)<b>
2012/07/14(土) 20:15:47.94 ID:gi1ydHVU

4. データ貼り付け
全体の分析
x <- c( 38,42,27,41,42,48,42,44,34,41,28,45,46,36,26,33,37,36,37,37,39,54,30,29,31,28,43,34,41,45 ,
46,39,40,32,41,51,47,47,49,44,40,47,48,37,30,29,48,50,30,46,43,31,40,31,48,31,26,45,41,35,39,41,44,46,44,29,43,49,46,37,44,32,32,48 ,
36,34,50,46,44,40,40,33,37,37,44,52,40,52,40,44,31,36,40,32,38,29,33,42,35,48,43,45,38,32 ,
55,40,32,43,43,34,35,22,27,28,38,39,31,32,39,45,43,40,44,38,33,51,41,34,38,43,47,37,47,37,37 ,
42,47,48,44,37,41,39,30,30,25,35,36,39,37,32,35,39,39,51,37,48,48,42,34,39,46,38,51,41,36,39,29,38,33,37,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 39.19298
> var(x)
[1] 44.92136
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.9571, 第1自由度 = 4, 第2自由度 = 166, P値 = 0.4327
有意。群間に差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.1677, 自由度 = 4, P値 = 0.8834
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.8744, 第1自由度 = 4.000, 第2自由度 = 80.263, P値 = 0.4831
有意。群間に差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.5847953 0.5847953
25 13 7.6023392 8.1871345
30 30 17.5438596 25.7309942
35 45 26.3157895 52.0467836
40 43 25.1461988 77.1929825
45 29 16.9590643 94.1520468
50 9 5.2631579 99.4152047
55 1 0.5847953 100.0000000
>


80 名無しに影響はない</b>(栃木県)<b>
2012/07/14(土) 20:16:40.14 ID:gi1ydHVU

BGと試料の比較
x <- c( 38,42,27,41,42,48,42,44,34,41,28,45,46,36,26,33,37,36,37,37,39,54,30,29,31,28,43,34,41,45 ,
46,39,40,32,41,51,47,47,49,44,40,47,48,37,30,29,48,50,30,46,43,31,40,31,48,31,26,45,41,35,39,41,44,46,44,29,43,49,46,37,44,32,32,48 ,
36,34,50,46,44,40,40,33,37,37,44,52,40,52,40,44,31,36,40,32,38,29,33,42,35,48,43,45,38,32 ,
55,40,32,43,43,34,35,22,27,28,38,39,31,32,39,45,43,40,44,38,33,51,41,34,38,43,47,37,47,37,37 ,
42,47,48,44,37,41,39,30,30,25,35,36,39,37,32,35,39,39,51,37,48,48,42,34,39,46,38,51,41,36,39,29,38,33,37,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.8252, 第1自由度 = 1, 第2自由度 = 169, P値 = 0.365
有意。試料とバックグラウンドに差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.8412, 自由度 = 1, P値 = 0.3591
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.805, 第1自由度 = 1.000, 第2自由度 = 150.816, P値 = 0.3710
有意。試料とバックグラウンドに差がある。

>


81 名無しに影響はない</b>(栃木県)<b>
2012/07/14(土) 20:17:23.36 ID:gi1ydHVU

繰り返しによる影響

1. n = 96 BG 繰り返し数 =3
x <- c( 38,42,27,41,42,48,42,44,34,41,28,45,46,36,26,33,37,36,37,37,39,54,30,29,31,28,43,34,41,45 ,
36,34,50,46,44,40,40,33,37,37,44,52,40,52,40,44,31,36,40,32,38,29,33,42,35,48,43,45,38,32 ,
42,47,48,44,37,41,39,30,30,25,35,36,39,37,32,35,39,39,51,37,48,48,42,34,39,46,38,51,41,36,39,29,38,33,37,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.78125
> var(x)
[1] 40.9727
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.6579, 第1自由度 = 2, 第2自由度 = 93, P値 = 0.5203
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.4677, 自由度 = 2, P値 = 0.7915
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.6216, 第1自由度 = 2.000, 第2自由度 = 60.393, P値 = 0.5405
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 8 8.333333 8.333333
30 16 16.666667 25.000000
35 31 32.291667 57.291667
40 23 23.958333 81.250000
45 12 12.500000 93.750000
50 6 6.250000 100.000000
>


82 名無しに影響はない</b>(栃木県)<b>
2012/07/14(土) 20:18:14.42 ID:gi1ydHVU

2. n = 75 2012.06.08収穫 栃木県内の水田内麦栽培地 6条大麦 40度1週間乾燥 3.9g 繰り返し数 =2
x <- c( 46,39,40,32,41,51,47,47,49,44,40,47,48,37,30,29,48,50,30,46,43,31,40,31,48,31,26,45,41,35,39,41,44,46,44,29,43,49,46,37,44,32,32,48 ,
55,40,32,43,43,34,35,22,27,28,38,39,31,32,39,45,43,40,44,38,33,51,41,34,38,43,47,37,47,37,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 39.72
> var(x)
[1] 50.09622
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.6254, 第1自由度 = 1, 第2自由度 = 73, P値 = 0.2064
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 5e-04, 自由度 = 1, P値 = 0.9824
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.6275, 第1自由度 = 1.000, 第2自由度 = 64.893, P値 = 0.2066
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.333333 1.333333
25 5 6.666667 8.000000
30 14 18.666667 26.666667
35 14 18.666667 45.333333
40 20 26.666667 72.000000
45 17 22.666667 94.666667
50 3 4.000000 98.666667
55 1 1.333333 100.000000
>


83 名無しに影響はない</b>(栃木県)<b>
2012/07/14(土) 20:19:21.79 ID:gi1ydHVU

BGと試料の比較

1. n = 96 BG 繰り返し数 =3
gr1 <- c( 38,42,27,41,42,48,42,44,34,41,28,45,46,36,26,33,37,36,37,37,39,54,30,29,31,28,43,34,41,45 ,
36,34,50,46,44,40,40,33,37,37,44,52,40,52,40,44,31,36,40,32,38,29,33,42,35,48,43,45,38,32 ,
42,47,48,44,37,41,39,30,30,25,35,36,39,37,32,35,39,39,51,37,48,48,42,34,39,46,38,51,41,36,39,29,38,33,37,36)

2. n = 75 2012.06.08収穫 栃木県内の水田内麦栽培地 6条大麦 40度1週間乾燥 3.9g 繰り返し数 =2
gr2 <- c( 46,39,40,32,41,51,47,47,49,44,40,47,48,37,30,29,48,50,30,46,43,31,40,31,48,31,26,45,41,35,39,41,44,46,44,29,43,49,46,37,44,32,32,48 ,
55,40,32,43,43,34,35,22,27,28,38,39,31,32,39,45,43,40,44,38,33,51,41,34,38,43,47,37,47,37,37)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -0.9084, 自由度 = 169, P値 = 0.365
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.978848 1.101348
標本推定値:
平均値x 平均値y
38.78125 39.72000
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -0.8972, 自由度 = 150.816, P値 = 0.3710
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.006053 1.128553
標本推定値:
平均値x 平均値y
38.78125 39.72000
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8179, 第1自由度 = 95, 第2自由度 = 74, P値 = 0.3543
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5274614 1.2533628
標本推定値:
分散比
0.81788
有意。分散が異なるので(Welchの方法)を使用する。

>


84 名無しに影響はない</b>(栃木県)<b>
2012/07/14(土) 20:20:39.48 ID:gi1ydHVU

3.補足コメント
39.72000 - 38.78125 = 0.9387512 CPM (0.441 Bq)
0.441 * 1000 / 3.9 = 113 Bq/kg
試料の度数分布を見ると、BG部分がかなり多い。試料が少なくて、マイナス誤差になっている可能性がある。

脱穀しないで、穂をそのままはかっています

85 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 20:27:40.17 ID:1J/lQEev

1.測定対象
「茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg」の分析

2.測定結果
1. n=30 糊台
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42)

2. n=30 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg
x <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48)

3. n=36 糊台
x <- c( 39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38)

4. n=30 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg
x <- c( 64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)

5. n=30 糊台
x <- c( 37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)


86 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 20:28:54.75 ID:1J/lQEev

4. データ貼り付け
全体の分析
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 47.13462
> var(x)
[1] 188.7624
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 97.3449, 第1自由度 = 4, 第2自由度 = 151, P値 < 2.2e-16
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 11.706, 自由度 = 4, P値 = 0.01968
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 92.0698, 第1自由度 = 4.000, 第2自由度 = 73.085, P値 < 2.2e-16
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.6410256 0.6410256
25 9 5.7692308 6.4102564
30 16 10.2564103 16.6666667
35 34 21.7948718 38.4615385
40 23 14.7435897 53.2051282
45 13 8.3333333 61.5384615
50 11 7.0512821 68.5897436
55 16 10.2564103 78.8461538
60 14 8.9743590 87.8205128
65 8 5.1282051 92.9487179
70 4 2.5641026 95.5128205
75 5 3.2051282 98.7179487
80 2 1.2820513 100.0000000
>


87 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 20:29:40.81 ID:1J/lQEev

BGと試料の比較
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 349.4101, 第1自由度 = 1, 第2自由度 = 154, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 8.2533, 自由度 = 1, P値 = 0.004068
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 300.974, 第1自由度 = 1.000, 第2自由度 = 96.834, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

>


88 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 20:30:16.22 ID:1J/lQEev

繰り返しによる影響

1. n = 96 BG 繰り返し数 =3
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.11458
> var(x)
[1] 42.69200
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.943, 第1自由度 = 2, 第2自由度 = 93, P値 = 0.009118
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.2586, 自由度 = 2, P値 = 0.3233
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 5.4039, 第1自由度 = 2.000, 第2自由度 = 58.496, P値 = 0.007021
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.041667 1.041667
25 9 9.375000 10.416667
30 16 16.666667 27.083333
35 34 35.416667 62.500000
40 22 22.916667 85.416667
45 10 10.416667 95.833333
50 3 3.125000 98.958333
55 1 1.041667 100.000000
>


89 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 20:30:50.63 ID:1J/lQEev

2. n = 60 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg 繰り返し数 =2
x <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 61.56667
> var(x)
[1] 82.96158
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.9524, 第1自由度 = 1, 第2自由度 = 58, P値 = 0.02996
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.0269, 自由度 = 1, P値 = 0.3109
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 4.9524, 第1自由度 = 1.000, 第2自由度 = 56.018, P値 = 0.03010
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
40 1 1.666667 1.666667
45 3 5.000000 6.666667
50 8 13.333333 20.000000
55 15 25.000000 45.000000
60 14 23.333333 68.333333
65 8 13.333333 81.666667
70 4 6.666667 88.333333
75 5 8.333333 96.666667
80 2 3.333333 100.000000
>



90 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 20:31:30.22 ID:1J/lQEev

BGと試料の比較

1. n = 96 BG 繰り返し数 =3
gr1 <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)

2. n = 60 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg 繰り返し数 =2
gr2 <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -18.6925, 自由度 = 154, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -25.93058 -20.97359
標本推定値:
平均値x 平均値y
38.11458 61.56667
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -17.3486, 自由度 = 96.834, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -26.13512 -20.76905
標本推定値:
平均値x 平均値y
38.11458 61.56667
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.5146, 第1自由度 = 95, 第2自由度 = 59, P値 = 0.003833
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.3197390 0.8074844
標本推定値:
分散比
0.5145996
有意。分散が異なるので(Welchの方法)を使用する。

>


91 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 20:32:10.90 ID:1J/lQEev

3.補足コメント
61.56667 - 38.11458 = 23.45209 CPM (11.0Bq)
11.0 * 1000 / 5.3 = 2079Bq/kg
水分 92.7 %, カリウム 200mg /100g (6.18 Bq/kg) ( http://www.yasainavi.com/eiyou/eiyouhyouseparate/101 )より
乾燥前の線量は
2079 * 7.3 / 100 = 151 Bq/kg


92 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 21:28:15.47 ID:1J/lQEev

1.測定対象
「2012.06.19入手 栃木県内で販売されていた夏みかん皮 11日乾燥 61.1wg 14.5dg」の分析

2.測定結果
1. n=30 糊台
x <- c( 36,60,35,32,37,45,31,29,35,31,28,38,32,43,40,51,36,40,34,37,35,37,34,33,34,37,48,42,32,44)

2. n=30 2012.06.19入手 栃木県内で販売されていた夏みかん皮 11日乾燥 61.1wg 14.5dg
x <- c( 56,49,53,45,47,35,53,42,42,51,43,32,55,50,47,38,33,44,42,45,51,37,42,53,46,45,53,49,55,46)

3. n=32 糊台
x <- c( 30,33,36,24,36,44,48,37,42,29,32,37,41,35,49,37,44,48,46,46,34,49,28,45,46,40,38,40,38,36,38,37)

4. n=30 2012.06.19入手 栃木県内で販売されていた夏みかん皮 11日乾燥 61.1wg 14.5dg
x <- c( 41,45,53,37,42,47,46,56,51,42,37,43,50,53,48,39,36,49,42,45,45,44,40,54,28,55,51,39,49,49)

5. n=30 糊台
x <- c( 23,40,39,58,54,37,35,46,30,30,27,40,33,37,42,42,46,35,33,39,34,47,42,43,42,36,43,34,35,33)


93 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 21:29:05.78 ID:1J/lQEev

4. データ貼り付け
全体の分析
x <- c( 36,60,35,32,37,45,31,29,35,31,28,38,32,43,40,51,36,40,34,37,35,37,34,33,34,37,48,42,32,44 ,
56,49,53,45,47,35,53,42,42,51,43,32,55,50,47,38,33,44,42,45,51,37,42,53,46,45,53,49,55,46 ,
30,33,36,24,36,44,48,37,42,29,32,37,41,35,49,37,44,48,46,46,34,49,28,45,46,40,38,40,38,36,38,37 ,
41,45,53,37,42,47,46,56,51,42,37,43,50,53,48,39,36,49,42,45,45,44,40,54,28,55,51,39,49,49 ,
23,40,39,58,54,37,35,46,30,30,27,40,33,37,42,42,46,35,33,39,34,47,42,43,42,36,43,34,35,33)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 41.17763
> var(x)
[1] 57.81592
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 10.648, 第1自由度 = 4, 第2自由度 = 147, P値 = 1.322e-07
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.7562, 自由度 = 4, P値 = 0.9442
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 10.6181, 第1自由度 = 4.000, 第2自由度 = 73.327, P値 = 7.659e-07
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.3157895 1.315789
25 6 3.9473684 5.263158
30 22 14.4736842 19.736842
35 37 24.3421053 44.078947
40 32 21.0526316 65.131579
45 31 20.3947368 85.526316
50 15 9.8684211 95.394737
55 6 3.9473684 99.342105
60 1 0.6578947 100.000000
>


94 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 21:29:49.61 ID:1J/lQEev

BGと試料の比較
x <- c( 36,60,35,32,37,45,31,29,35,31,28,38,32,43,40,51,36,40,34,37,35,37,34,33,34,37,48,42,32,44 ,
56,49,53,45,47,35,53,42,42,51,43,32,55,50,47,38,33,44,42,45,51,37,42,53,46,45,53,49,55,46 ,
30,33,36,24,36,44,48,37,42,29,32,37,41,35,49,37,44,48,46,46,34,49,28,45,46,40,38,40,38,36,38,37 ,
41,45,53,37,42,47,46,56,51,42,37,43,50,53,48,39,36,49,42,45,45,44,40,54,28,55,51,39,49,49 ,
23,40,39,58,54,37,35,46,30,30,27,40,33,37,42,42,46,35,33,39,34,47,42,43,42,36,43,34,35,33)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 42.4065, 第1自由度 = 1, 第2自由度 = 150, P値 = 1.053e-09
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.2283, 自由度 = 1, P値 = 0.6328
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 43.4409, 第1自由度 = 1.000, 第2自由度 = 131.285, P値 = 9.68e-10
有意。試料とバックグラウンドに差異がある。

>


95 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 21:30:25.48 ID:1J/lQEev

繰り返しによる影響

1. n = 92 BG 繰り返し数 =3
x <- c( 36,60,35,32,37,45,31,29,35,31,28,38,32,43,40,51,36,40,34,37,35,37,34,33,34,37,48,42,32,44 ,
30,33,36,24,36,44,48,37,42,29,32,37,41,35,49,37,44,48,46,46,34,49,28,45,46,40,38,40,38,36,38,37 ,
23,40,39,58,54,37,35,46,30,30,27,40,33,37,42,42,46,35,33,39,34,47,42,43,42,36,43,34,35,33)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.30435
> var(x)
[1] 47.37888
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.2939, 第1自由度 = 2, 第2自由度 = 89, P値 = 0.746
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.522, 自由度 = 2, P値 = 0.7703
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.3045, 第1自由度 = 2.000, 第2自由度 = 58.781, P値 = 0.7386
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 2.173913 2.173913
25 5 5.434783 7.608696
30 20 21.739130 29.347826
35 29 31.521739 60.869565
40 19 20.652174 81.521739
45 13 14.130435 95.652174
50 2 2.173913 97.826087
55 1 1.086957 98.913043
60 1 1.086957 100.000000
>


96 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 21:31:00.82 ID:1J/lQEev

2. n = 60 2012.06.19入手 栃木県内で販売されていた夏みかん皮 11日乾燥 61.1wg 14.5dg 繰り返し数 =2
x <- c( 56,49,53,45,47,35,53,42,42,51,43,32,55,50,47,38,33,44,42,45,51,37,42,53,46,45,53,49,55,46 ,
41,45,53,37,42,47,46,56,51,42,37,43,50,53,48,39,36,49,42,45,45,44,40,54,28,55,51,39,49,49)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 45.58333
> var(x)
[1] 42.28107
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.2057, 第1自由度 = 1, 第2自由度 = 58, P値 = 0.6518
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.0027, 自由度 = 1, P値 = 0.9586
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.2057, 第1自由度 = 1.000, 第2自由度 = 57.995, P値 = 0.6518
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 1 1.666667 1.666667
30 2 3.333333 5.000000
35 8 13.333333 18.333333
40 13 21.666667 40.000000
45 18 30.000000 70.000000
50 13 21.666667 91.666667
55 5 8.333333 100.000000
>


97 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 21:31:35.84 ID:1J/lQEev

BGと試料の比較

1. n = 92 BG 繰り返し数 =3
gr1 <- c( 36,60,35,32,37,45,31,29,35,31,28,38,32,43,40,51,36,40,34,37,35,37,34,33,34,37,48,42,32,44 ,
30,33,36,24,36,44,48,37,42,29,32,37,41,35,49,37,44,48,46,46,34,49,28,45,46,40,38,40,38,36,38,37 ,
23,40,39,58,54,37,35,46,30,30,27,40,33,37,42,42,46,35,33,39,34,47,42,43,42,36,43,34,35,33)

2. n = 60 2012.06.19入手 栃木県内で販売されていた夏みかん皮 11日乾燥 61.1wg 14.5dg 繰り返し数 =2
gr2 <- c( 56,49,53,45,47,35,53,42,42,51,43,32,55,50,47,38,33,44,42,45,51,37,42,53,46,45,53,49,55,46 ,
41,45,53,37,42,47,46,56,51,42,37,43,50,53,48,39,36,49,42,45,45,44,40,54,28,55,51,39,49,49)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -6.512, 自由度 = 150, P値 = 1.053e-09
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -9.487604 -5.070367
標本推定値:
平均値x 平均値y
38.30435 45.58333
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -6.591, 自由度 = 131.285, P値 = 9.68e-10
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -9.463684 -5.094287
標本推定値:
平均値x 平均値y
38.30435 45.58333
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.1206, 第1自由度 = 91, 第2自由度 = 59, P値 = 0.6448
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.6941548 1.7668627
標本推定値:
分散比
1.120570
有意。分散が異なるので(Welchの方法)を使用する

>


98 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 21:32:11.93 ID:1J/lQEev

3.補足コメント
45.58333 - 38.30435 = 7.278976 CPM (3.42Bq)
3.42 * 1000 / 61.1 = 56.0 Bq/wkg
3.42 * 1000 / 14.5 = 236 Bq/dkg
水分 (61.1-14.5) * 100 / 61.1 = 76.2%
カリウム 90mg/70g ( http://slism.jp/calorie/107112/ ) 4.0Bq/kg


99 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 22:35:28.11 ID:1J/lQEev

1.測定対象
「2012.06.19入手 栃木県内で販売されていた夏みかん実 14日乾燥 12.4wg 1.7dg」の分析

2.測定結果
1. n=73 糊台
x <- c( 35,49,29,35,38,34,36,33,40,37,44,33,33,33,40,37,35,54,27,28,42,38,39,31,39,30,35,
41,37,35,53,26,39,35,31,46,40,38,29,42,47,37,46,35,34,47,35,45,42,29,31,42,38,45,43,35,27,
30,35,36,43,30,45,32,38,42,33,39,30,42,37,35,42)

2. n=38 2012.06.19入手 栃木県内で販売されていた夏みかん実 14日乾燥 12.4wg 1.7dg
x <- c( 30,39,31,44,49,44,39,45,37,40,41,41,45,36,43,40,49,44,32,39,49,38,49,38,36,53,42,37,46,47,44,54,48,36,43,38,41,45)

3. n=31 糊台
x <- c( 35,35,47,33,41,42,45,54,27,34,36,53,39,35,41,56,42,30,48,35,39,44,32,36,37,33,30,35,43,32,43)

4. n=41 2012.06.19入手 栃木県内で販売されていた夏みかん実 14日乾燥 12.4wg 1.7dg
x <- c( 49,46,35,31,35,29,51,39,49,48,37,34,36,35,47,38,31,34,33,48,40,51,42,39,40,42,47,28,43,44,38,41,41,46,28,40,53,38,46,44,40)

5. n=265 糊台
x <- c( 40,35,40,37,40,37,32,30,40,28,40,47,39,53,43,33,36,34,41,31,47,32,45,46,31,49,38,
44,40,43,40,41,38,39,51,31,34,49,32,39,34,38,30,39,48,41,39,40,35,34,35,48,51,38,38,28,39,
35,51,47,45,36,34,38,45,31,52,62,33,34,30,37,38,36,47,36,35,29,32,43,40,39,40,49,33,37,27,
45,28,40,60,46,35,36,50,42,36,33,36,30,40,48,47,48,51,48,33,42,41,31,34,39,26,37,38,28,42,
42,56,38,32,44,44,54,35,31,40,39,36,38,42,32,37,34,33,35,35,33,40,36,36,47,39,36,29,43,28,
35,37,35,47,37,36,36,37,40,33,39,38,40,35,28,31,39,39,35,28,35,47,27,31,37,44,45,41,38,41,
44,41,30,43,41,31,37,27,43,38,44,35,39,38,33,40,30,37,41,31,33,43,40,40,37,40,30,27,48,45,
35,42,32,36,43,25,34,34,38,46,38,38,32,26,34,40,33,43,42,27,20,31,41,47,27,34,31,40,39,38,
40,36,43,37,38,32,47,37,39,32,31,36,44,39,30,37,38,50,33,48,46,33,47,34,40,30,44,35)

以下、行数がうまく合わせられないので、データ行を略。

100 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 22:36:11.72 ID:1J/lQEev

4. データ貼り付け
全体の分析
> mean(x)
[1] 38.58705
> var(x)
[1] 42.52484
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.4455, 第1自由度 = 4, 第2自由度 = 443, P値 = 0.001564
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.5165, 自由度 = 4, P値 = 0.6417
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 5.0627, 第1自由度 = 4.000, 第2自由度 = 97.144, P値 = 0.0009504
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.2232143 0.2232143
25 29 6.4732143 6.6964286
30 88 19.6428571 26.3392857
35 144 32.1428571 58.4821429
40 103 22.9910714 81.4732143
45 61 13.6160714 95.0892857
50 18 4.0178571 99.1071429
55 2 0.4464286 99.5535714
60 2 0.4464286 100.0000000
>


101 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 22:36:44.88 ID:1J/lQEev

BGと試料の比較
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 14.8474, 第1自由度 = 1, 第2自由度 = 446, P値 = 0.0001337
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.2354, 自由度 = 1, P値 = 0.6275
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 15.7045, 第1自由度 = 1.000, 第2自由度 = 117.313, P値 = 0.0001276
有意。試料とバックグラウンドに差異がある。

>


102 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 22:37:20.83 ID:1J/lQEev

繰り返しによる影響

1. n = 369 BG 繰り返し数 =3
> mean(x)
[1] 38.04607
> var(x)
[1] 41.85385
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.9135, 第1自由度 = 2, 第2自由度 = 366, P値 = 0.4020
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.358, 自由度 = 2, P値 = 0.5071
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.8797, 第1自由度 = 2.000, 第2自由度 = 70.614, P値 = 0.4194
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.2710027 0.2710027
25 26 7.0460705 7.3170732
30 80 21.6802168 28.9972900
35 123 33.3333333 62.3306233
40 80 21.6802168 84.0108401
45 42 11.3821138 95.3929539
50 13 3.5230352 98.9159892
55 2 0.5420054 99.4579946
60 2 0.5420054 100.0000000
>


103 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 22:37:53.88 ID:1J/lQEev

2. n = 79 2012.06.19入手 栃木県内で販売されていた夏みかん実 14日乾燥 12.4wg 1.7dg 繰り返し数 =2
x <- c( 30,39,31,44,49,44,39,45,37,40,41,41,45,36,43,40,49,44,32,39,49,38,49,38,36,53,42,37,46,47,44,54,48,36,43,38,41,45 ,
49,46,35,31,35,29,51,39,49,48,37,34,36,35,47,38,31,34,33,48,40,51,42,39,40,42,47,28,43,44,38,41,41,46,28,40,53,38,46,44,40)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 41.11392
> var(x)
[1] 38.38429
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.1654, 第1自由度 = 1, 第2自由度 = 77, P値 = 0.2837
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.9091, 自由度 = 1, P値 = 0.3404
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.1793, 第1自由度 = 1.000, 第2自由度 = 76.535, P値 = 0.2809
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 3 3.797468 3.797468
30 8 10.126582 13.924051
35 21 26.582278 40.506329
40 23 29.113924 69.620253
45 19 24.050633 93.670886
50 5 6.329114 100.000000
>


104 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 22:38:45.42 ID:1J/lQEev

BGと試料の比較

1. n = 369 BG 繰り返し数 =3
gr1 <- c( 35,49,29,35,38,34,36,33,40,37,44,33,33,33,40,37,35,54,27,28,42,38,39,31,39,30,35,41,
37,35,53,26,39,35,31,46,40,38,29,42,47,37,46,35,34,47,35,45,42,29,31,42,38,45,43,35,27,30,35,36,43,30,45,32,38,42,33,39,30,42,37,35,42 ,
35,35,47,33,41,42,45,54,27,34,36,53,39,35,41,56,42,30,48,35,39,44,32,36,37,33,30,35,43,32,43 ,
40,35,40,37,40,37,32,30,40,28,40,47,39,53,43,33,36,34,41,31,47,32,45,46,31,49,38,44,40,43,40,
41,38,39,51,31,34,49,32,39,34,38,30,39,48,41,39,40,35,34,35,48,51,38,38,28,39,35,51,47,45,36,
34,38,45,31,52,62,33,34,30,37,38,36,47,36,35,29,32,43,40,39,40,49,33,37,27,45,28,40,60,46,35,
36,50,42,36,33,36,30,40,48,47,48,51,48,33,42,41,31,34,39,26,37,38,28,42,42,56,38,32,44,44,54,
35,31,40,39,36,38,42,32,37,34,33,35,35,33,40,36,36,47,39,36,29,43,28,35,37,35,47,37,36,36,37,
40,33,39,38,40,35,28,31,39,39,35,28,35,47,27,31,37,44,45,41,38,41,44,41,30,43,41,31,37,27,43,
38,44,35,39,38,33,40,30,37,41,31,33,43,40,40,37,40,30,27,48,45,35,42,32,36,43,25,34,34,38,46,
38,38,32,26,34,40,33,43,42,27,20,31,41,47,27,34,31,40,39,38,40,36,43,37,38,32,47,37,39,32,31,36,44,39,30,37,38,50,33,48,46,33,47,34,40,30,44,35)

2. n = 79 2012.06.19入手 栃木県内で販売されていた夏みかん実 14日乾燥 12.4wg 1.7dg 繰り返し数 =2
gr2 <- c( 30,39,31,44,49,44,39,45,37,40,41,41,45,36,43,40,49,44,32,39,49,38,49,38,36,53,42,37,46,47,44,54,48,36,43,38,41,45 ,
49,46,35,31,35,29,51,39,49,48,37,34,36,35,47,38,31,34,33,48,40,51,42,39,40,42,47,28,43,44,38,41,41,46,28,40,53,38,46,44,40)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -3.8532, 自由度 = 446, P値 = 0.0001337
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -4.632575 -1.503132
標本推定値:
平均値x 平均値y
38.04607 41.11392
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -3.9629, 自由度 = 117.313, P値 = 0.0001276
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -4.600967 -1.534741
標本推定値:
平均値x 平均値y
38.04607 41.11392
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.0904, 第1自由度 = 368, 第2自由度 = 78, P値 = 0.6546
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.7551789 1.5132071
標本推定値:
分散比
1.09039
有意。分散が異なるので(Welchの方法)を使用する。

>


105 名無しに影響はない</b>(栃木県)<b>
2012/07/15(日) 22:39:21.58 ID:1J/lQEev

3.補足コメント
41.11392 - 38.04607 = 3.067848 CPM (1.44Bq)
1.44 * 1000 / 12.4 = 116Bq/kg
外観から夏みかんと思われるが、著者ははっさく等との区別がつけられない。
カリウム 110-190 mg/100g ( http://www.kudamononavi.com/zukan/citrus.htm 夏みかん:カリウム(190mg)、はっさく:カリウム(180mg)、日向夏:カリウム(110mg)、ブンタン:カリウム(180mg)、ぽんかん:カリウム(160mg) )より、3.4-5.9Bq/kg。
よって、ほとんどが福島由来のセシウム等である。


106 名無しに影響はない</b>(栃木県)<b>
2012/07/22(日) 20:22:50.34 ID:KXZv+XXh

1.測定対象
「茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg」の分析

2.測定結果
1. n=30 糊台
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42)

2. n=30 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg
x <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48)

3. n=36 糊台
x <- c( 39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38)

4. n=30 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg
x <- c( 64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)

5. n=30 糊台
x <- c( 37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)


107 名無しに影響はない</b>(栃木県)<b>
2012/07/22(日) 20:24:38.59 ID:KXZv+XXh

4. データ貼り付け
全体の分析
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 47.13462
> var(x)
[1] 188.7624
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 97.3449, 第1自由度 = 4, 第2自由度 = 151, P値 < 2.2e-16
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 11.706, 自由度 = 4, P値 = 0.01968
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 92.0698, 第1自由度 = 4.000, 第2自由度 = 73.085, P値 < 2.2e-16
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.6410256 0.6410256
25 9 5.7692308 6.4102564
30 16 10.2564103 16.6666667
35 34 21.7948718 38.4615385
40 23 14.7435897 53.2051282
45 13 8.3333333 61.5384615
50 11 7.0512821 68.5897436
55 16 10.2564103 78.8461538
60 14 8.9743590 87.8205128
65 8 5.1282051 92.9487179
70 4 2.5641026 95.5128205
75 5 3.2051282 98.7179487
80 2 1.2820513 100.0000000
>


108 名無しに影響はない</b>(栃木県)<b>
2012/07/22(日) 20:25:14.54 ID:KXZv+XXh

BGと試料の比較
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 349.4101, 第1自由度 = 1, 第2自由度 = 154, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 8.2533, 自由度 = 1, P値 = 0.004068
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 300.974, 第1自由度 = 1.000, 第2自由度 = 96.834, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

>



109 名無しに影響はない</b>(栃木県)<b>
2012/07/22(日) 20:26:36.01 ID:KXZv+XXh

繰り返しによる影響

1. n = 96 BG 繰り返し数 =3
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.11458
> var(x)
[1] 42.69200
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.943, 第1自由度 = 2, 第2自由度 = 93, P値 = 0.009118
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.2586, 自由度 = 2, P値 = 0.3233
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 5.4039, 第1自由度 = 2.000, 第2自由度 = 58.496, P値 = 0.007021
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.041667 1.041667
25 9 9.375000 10.416667
30 16 16.666667 27.083333
35 34 35.416667 62.500000
40 22 22.916667 85.416667
45 10 10.416667 95.833333
50 3 3.125000 98.958333
55 1 1.041667 100.000000
>


110 名無しに影響はない</b>(栃木県)<b>
2012/07/22(日) 20:27:34.93 ID:KXZv+XXh

2. n = 60 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg 繰り返し数 =2
x <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 61.56667
> var(x)
[1] 82.96158
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.9524, 第1自由度 = 1, 第2自由度 = 58, P値 = 0.02996
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.0269, 自由度 = 1, P値 = 0.3109
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 4.9524, 第1自由度 = 1.000, 第2自由度 = 56.018, P値 = 0.03010
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
40 1 1.666667 1.666667
45 3 5.000000 6.666667
50 8 13.333333 20.000000
55 15 25.000000 45.000000
60 14 23.333333 68.333333
65 8 13.333333 81.666667
70 4 6.666667 88.333333
75 5 8.333333 96.666667
80 2 3.333333 100.000000
>


111 名無しに影響はない</b>(栃木県)<b>
2012/07/22(日) 20:28:22.08 ID:KXZv+XXh

BGと試料の比較

1. n = 96 BG 繰り返し数 =3
gr1 <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)

2. n = 60 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg 繰り返し数 =2
gr2 <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -18.6925, 自由度 = 154, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -25.93058 -20.97359
標本推定値:
平均値x 平均値y
38.11458 61.56667
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -17.3486, 自由度 = 96.834, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -26.13512 -20.76905
標本推定値:
平均値x 平均値y
38.11458 61.56667
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.5146, 第1自由度 = 95, 第2自由度 = 59, P値 = 0.003833
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.3197390 0.8074844
標本推定値:
分散比
0.5145996
有意。分散が異なるので(Welchの方法)を使用する。

>


112 名無しに影響はない</b>(栃木県)<b>
2012/07/22(日) 20:30:10.64 ID:KXZv+XXh

3.補足コメント
61.56667 - 38.11458 = 23.45209 CPM (11.0Bq)
11.0 * 1000 / 5.3 = 2079Bq/kg
水分 92.7 %, カリウム 200mg /100g (6.18 Bq/kg) ( http://www.yasainavi.com/eiyou/eiyouhyouseparate/101 )より
乾燥前の線量
2079 * 7.3 / 100 = 151 Bq/kg
よりもカリウム由来線量ははるかに少ない


113 名無しに影響はない</b>(やわらか銀行)<b>
2012/07/28(土) 01:17:29.73 ID:4CqaMv3z

肥料や農薬が汚染していたら九州四国の野 菜も汚染しそうですね。


114 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 20:14:03.91 ID:c8glUN+E

113
天気図を見ていると、
福島からのほこりが東京上空をすり抜けて、九州四国に上陸したり
福島から、佐渡上空をすり抜けて中国四国に流れ込んでゆく様子が見当つきます。
ここに産廃焼却物(汚染地区産ダンボール廃棄物等)や肥料(食料品廃棄物を含む)が流れ込むことになるでしょう。
入手が困難で野 菜の分析をしていませんが、大阪・兵庫・長崎の住所が書いてある乾燥食品は結構高いです。
では、いってみますか。

1.測定対象
「栃木県内で販売されていた桃。55.6wg」6.4dgの分析
桃を適当に切断し、プリンカップ内で乾燥。たれた汁を含めて測定した。したがって、種を除いている。
「空試験」は、糊台の上に、ポリ袋(ジップロック お手軽バッグ 小 )に入れた No.160 プリンカップ(小) 霧島製作所( http://item.rakuten.co.jp/b-stage/4962817261608/ )を置いた状態。

2.測定結果
1. n=30 糊台
x <- c( 44,37,33,39,46,51,35,34,36,32,25,36,44,41,40,36,47,29,34,53,41,30,46,41,35,40,25,29,33,41)

2. n=30 空試験
x <- c( 38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36)

3. n=31 2012.07.12入手。栃木県内で販売されていた桃。55.6wg
x <- c( 45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43)

4. n=60 空試験
x <- c( 44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,
46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37)

5. n=30 2012.07.12入手。栃木県内で販売されていた桃。55.6wg
x <- c( 40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40)

6. n=30 空試験
x <- c( 32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36)

7. n=31 糊台
x <- c( 38,27,26,25,30,26,46,46,37,27,42,29,28,26,42,34,42,35,35,44,42,36,37,27,47,35,40,46,34,28,34)

115 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 20:15:03.14 ID:c8glUN+E

4. データ貼り付け

全体の分析
x <- c( 44,37,33,39,46,51,35,34,36,32,25,36,44,41,40,36,47,29,34,53,41,30,46,41,35,40,25,29,33,41 ,
38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36 ,
45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43 ,
44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37 ,
40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40 ,
32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36 ,
38,27,26,25,30,26,46,46,37,27,42,29,28,26,42,34,42,35,35,44,42,36,37,27,47,35,40,46,34,28,34)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 ,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 ,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7)
> mean(x)
[1] 38.96694
> var(x)
[1] 49.06944
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 9.1952, 第1自由度 = 6, 第2自由度 = 235, P値 = 4.763e-09
有意。群間に差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 9.9331, 自由度 = 6, P値 = 0.1275
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 7.9609, 第1自由度 = 6.000, 第2自由度 = 93.984, P値 = 5.949e-07
有意。群間に差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 0.8264463 0.8264463
25 22 9.0909091 9.9173554
30 39 16.1157025 26.0330579
35 68 28.0991736 54.1322314
40 51 21.0743802 75.2066116
45 44 18.1818182 93.3884298
50 14 5.7851240 99.1735537
55 1 0.4132231 99.5867769
60 1 0.4132231 100.0000000
>


116 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 20:15:45.85 ID:c8glUN+E

BGと空試験と試料の比較
x <- c( 44,37,33,39,46,51,35,34,36,32,25,36,44,41,40,36,47,29,34,53,41,30,46,41,35,40,25,29,33,41 ,
38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36 ,
45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43 ,
44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37 ,
40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40 ,
32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36 ,
38,27,26,25,30,26,46,46,37,27,42,29,28,26,42,34,42,35,35,44,42,36,37,27,47,35,40,46,34,28,34)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 24.1871, 第1自由度 = 2, 第2自由度 = 239, P値 = 2.717e-10
有意。BGと空試験と試料に差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.4959, 自由度 = 2, P値 = 0.2871
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 23.2284, 第1自由度 = 2.000, 第2自由度 = 121.992, P値 = 2.833e-09
有意。BGと空試験と試料に差がある。

>


117 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 20:17:01.02 ID:c8glUN+E

繰り返しによる影響

1. n = 61 BG 繰り返し数 =2
x <- c( 44,37,33,39,46,51,35,34,36,32,25,36,44,41,40,36,47,29,34,53,41,30,46,41,35,40,25,29,33,41 ,
38,27,26,25,30,26,46,46,37,27,42,29,28,26,42,34,42,35,35,44,42,36,37,27,47,35,40,46,34,28,34)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 36.45902
> var(x)
[1] 50.91913
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.016, 第1自由度 = 1, 第2自由度 = 59, P値 = 0.1609
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.0057, 自由度 = 1, P値 = 0.9398
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 2.0169, 第1自由度 = 1.000, 第2自由度 = 58.978, P値 = 0.1608
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 14 22.950820 22.95082
30 10 16.393443 39.34426
35 14 22.950820 62.29508
40 14 22.950820 85.24590
45 7 11.475410 96.72131
50 2 3.278689 100.00000
>


118 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 20:17:46.16 ID:c8glUN+E

2. n = 120 空試験 繰り返し数 =3
x <- c( 38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36 ,
44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37 ,
32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 37.775
> var(x)
[1] 35.94055
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.1421, 第1自由度 = 2, 第2自由度 = 117, P値 = 0.122
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 7.2977, 自由度 = 2, P値 = 0.02602
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.4596, 第1自由度 = 2.000, 第2自由度 = 56.194, P値 = 0.241
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.666667 1.666667
25 8 6.666667 8.333333
30 22 18.333333 26.666667
35 43 35.833333 62.500000
40 27 22.500000 85.000000
45 15 12.500000 97.500000
50 3 2.500000 100.000000
>


119 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 20:18:46.12 ID:c8glUN+E

3. n = 61 2012.07.12入手。栃木県内で販売されていた桃。55.6wg 繰り返し数 =2
x <- c( 45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43 ,
40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 43.81967
> var(x)
[1] 41.71694
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.1372, 第1自由度 = 1, 第2自由度 = 59, P値 = 0.7124
有意ではない。繰り返しによる差は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.102, 自由度 = 1, P値 = 0.7494
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.1369, 第1自由度 = 1.000, 第2自由度 = 58.499, P値 = 0.7127
有意ではない。繰り返しによる差は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
30 7 11.475410 11.47541
35 11 18.032787 29.50820
40 10 16.393443 45.90164
45 22 36.065574 81.96721
50 9 14.754098 96.72131
55 1 1.639344 98.36066
60 1 1.639344 100.00000
>


120 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 20:19:46.46 ID:c8glUN+E

BGと試料の比較

1. n = 61 BG 繰り返し数 =2
gr1 <- c( 44,37,33,39,46,51,35,34,36,32,25,36,44,41,40,36,47,29,34,53,41,30,46,41,35,40,25,29,33,41 ,
38,27,26,25,30,26,46,46,37,27,42,29,28,26,42,34,42,35,35,44,42,36,37,27,47,35,40,46,34,28,34)

2. n = 120 空試験 繰り返し数 =3
gr2 <- c( 38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36 ,
44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37 ,
32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -1.3076, 自由度 = 179, P値 = 0.1927
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.3019181 0.6699509
標本推定値:
平均値x 平均値y
36.45902 37.77500
有意。バックグラウンドと空試験に差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -1.2357, 自由度 = 104.028, P値 = 0.2194
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.4279299 0.7959627
標本推定値:
平均値x 平均値y
36.45902 37.77500
有意。バックグラウンドと空試験に差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.4168, 第1自由度 = 60, 第2自由度 = 119, P値 = 0.1091
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.9253192 2.2410315
標本推定値:
分散比
1.41676
有意。分散が異なるので(Welchの方法)を使用する。

>


121 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 20:20:48.09 ID:c8glUN+E

BGと試料の比較
3. n = 61 2012.07.12入手。栃木県内で販売されていた桃。55.6wg 繰り返し数 =2
gr2 <- c( 45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43 ,
40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -5.973, 自由度 = 120, P値 = 2.441e-08
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -9.800573 -4.920739
標本推定値:
平均値x 平均値y
36.45902 43.81967
有意。バックグラウンドと試料に差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -5.973, 自由度 = 118.827, P値 = 2.489e-08
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -9.800818 -4.920493
標本推定値:
平均値x 平均値y
36.45902 43.81967
有意。バックグラウンドと試料に差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.2206, 第1自由度 = 60, 第2自由度 = 60, P値 = 0.4424
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.7322973 2.0344620
標本推定値:
分散比
1.220586
有意。分散が異なるので(Welchの方法)を使用する。

>



122 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 20:21:46.05 ID:c8glUN+E

空試験と試料の比較

gr1 <- c( 38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36 ,
44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37 ,
32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36)
gr2 <- c( 45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43 ,
40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -6.246, 自由度 = 179, P値 = 2.981e-09
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -7.954369 -4.134975
標本推定値:
平均値x 平均値y
37.77500 43.81967
有意。空試験と試料に差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -6.0955, 自由度 = 113.122, P値 = 1.550e-08
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -8.009306 -4.080038
標本推定値:
平均値x 平均値y
37.77500 43.81967
有意。空試験と試料に差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8615, 第1自由度 = 119, 第2自由度 = 60, P値 = 0.488
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5446538 1.3190975
標本推定値:
分散比
0.8615336
有意。分散が異なるので(Welchの方法)を使用する。

>


123 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 20:26:20.80 ID:c8glUN+E

3.補足コメント
「栃木県内で販売されていた桃。55.6wg」6.4dgの分析
43.81967 - 37.77500 = 6.04467CPM (2.84Bq)
2.84 * 1000 / 55.6 = 51.1 Bq/kg
2.84 * 1000 / 6.4 = 444 Bq/dkg
カリウム 180mg/100g ( http://www.kudamononavi.com/eiyou/eiyouhyouseparate/135 ) より、5.5Bq/kg
水分 88% ( http://www.kudamononavi.com/eiyou/eiyouhyouseparate/135 )

連投制限の関係であまり出せませんが、私が購入する範囲では、
汚染されていない食品が稀です。
自家製野 菜を放置して乾かしてしまうと、0.2uSvなんて頻繁に見かけます。
ごみ減量のため、野 菜くずをある程度乾かしてから廃棄していますが、これがかなり高いです。

124 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 21:22:08.66 ID:c8glUN+E

1.測定対象
「栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥」の分析
99.3wg, 11.9 dg

2.測定結果
試料の132棄却後
1. n=40 糊台
x <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)

2. n=31 栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥
x <- c( 47,49,50,42,41,42,40,45,45,44,51,57,64,48,48,44,45,62,36,47,56,52,43,90, 52,52,43,53,47,38)
132を棄却

3. n=42 糊台
x <- c( 39,42,40,37,48,43,39,32,31,28,35,25,37,39,33,42,47,35,35,32,41,34,35,40,52,43,36,35,29,29,36,44,43,32,57,26,36,30,39,40,47,38)

4. n=32 栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥
x <- c( 47,45,43,54,50,54,43,38,50,42,57,46,50,36,39,37,28,59,44,60,53,47,48,55,57,38,36,48,49,51,42,39)

5. n=38 糊台
x <- c( 34,29,36,32,34,40,45,30,48,30,36,34,33,24,44,35,48,35,58,34,42,48,37,47,34,45,32,37,38,46,29,31,39,41,34,48,26,43)


125 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 21:23:19.53 ID:c8glUN+E

2.測定結果
全体の分析
x <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26 ,
47,49,50,42,41,42,40,45,45,44,51,57,64,48,48,44,45,62,36,47,56,52,43,90,52,52,43,53,47,38 ,
39,42,40,37,48,43,39,32,31,28,35,25,37,39,33,42,47,35,35,32,41,34,35,40,52,43,36,35,29,29,36,44,43,32,57,26,36,30,39,40,47,38 ,
47,45,43,54,50,54,43,38,50,42,57,46,50,36,39,37,28,59,44,60,53,47,48,55,57,38,36,48,49,51,42,39 ,
34,29,36,32,34,40,45,30,48,30,36,34,33,24,44,35,48,35,58,34,42,48,37,47,34,45,32,37,38,46,29,31,39,41,34,48,26,43)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 40.83516
> var(x)
[1] 81.59699
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 20.0223, 第1自由度 = 4, 第2自由度 = 177, P値 = 1.286e-13
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 9.7632, 自由度 = 4, P値 = 0.04461
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 16.6273, 第1自由度 = 4.000, 第2自由度 = 84.046, P値 = 4.489e-10
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.5494505 0.5494505
25 13 7.1428571 7.6923077
30 30 16.4835165 24.1758242
35 46 25.2747253 49.4505495
40 35 19.2307692 68.6813187
45 30 16.4835165 85.1648352
50 15 8.2417582 93.4065934
55 8 4.3956044 97.8021978
60 3 1.6483516 99.4505495
65 0 0.0000000 99.4505495
70 0 0.0000000 99.4505495
75 0 0.0000000 99.4505495
80 0 0.0000000 99.4505495
85 0 0.0000000 99.4505495
90 1 0.5494505 100.0000000
>


126 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 21:24:02.08 ID:c8glUN+E

BGと試料の比較
x <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26 ,
47,49,50,42,41,42,40,45,45,44,51,57,64,48,48,44,45,62,36,47,56,52,43,90, 52,52,43,53,47,38 ,
39,42,40,37,48,43,39,32,31,28,35,25,37,39,33,42,47,35,35,32,41,34,35,40,52,43,36,35,29,29,36,44,43,32,57,26,36,30,39,40,47,38 ,
47,45,43,54,50,54,43,38,50,42,57,46,50,36,39,37,28,59,44,60,53,47,48,55,57,38,36,48,49,51,42,39 ,
34,29,36,32,34,40,45,30,48,30,36,34,33,24,44,35,48,35,58,34,42,48,37,47,34,45,32,37,38,46,29,31,39,41,34,48,26,43)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 77.4715, 第1自由度 = 1, 第2自由度 = 180, P値 = 1.091e-15
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 6.7768, 自由度 = 1, P値 = 0.009235
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 64.8596, 第1自由度 = 1.000, 第2自由度 = 97.673, P値 = 1.987e-12
有意。試料とバックグラウンドに差異がある。

>


127 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 21:24:45.70 ID:c8glUN+E

繰り返しによる影響

1. n = 120 BG 繰り返し数 =3
x <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26 ,
39,42,40,37,48,43,39,32,31,28,35,25,37,39,33,42,47,35,35,32,41,34,35,40,52,43,36,35,29,29,36,44,43,32,57,26,36,30,39,40,47,38 ,
34,29,36,32,34,40,45,30,48,30,36,34,33,24,44,35,48,35,58,34,42,48,37,47,34,45,32,37,38,46,29,31,39,41,34,48,26,43)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 37.28333
> var(x)
[1] 45.56611
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.4855, 第1自由度 = 2, 第2自由度 = 117, P値 = 0.6166
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.3386, 自由度 = 2, P値 = 0.5121
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.5247, 第1自由度 = 2.000, 第2自由度 = 76.936, P値 = 0.5938
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.8333333 0.8333333
25 12 10.0000000 10.8333333
30 30 25.0000000 35.8333333
35 37 30.8333333 66.6666667
40 22 18.3333333 85.0000000
45 14 11.6666667 96.6666667
50 2 1.6666667 98.3333333
55 2 1.6666667 100.0000000
>



128 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 21:25:31.94 ID:c8glUN+E

2. n = 63 栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥 繰り返し数 =2
x <- c( 47,49,50,42,41,42,40,45,45,44,51,57,64,48,48,44,45,62,36,47,56,52,43,90,52,52,43,53,47,38 ,
47,45,43,54,50,54,43,38,50,42,57,46,50,36,39,37,28,59,44,60,53,47,48,55,57,38,36,48,49,51,42,39)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 47.70968
> var(x)
[1] 80.37335
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.4073, 第1自由度 = 1, 第2自由度 = 60, P値 = 0.2402
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.1427, 自由度 = 1, P値 = 0.1433
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.3831, 第1自由度 = 1.000, 第2自由度 = 54.194, P値 = 0.2447
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 1 1.612903 1.612903
30 0 0.000000 1.612903
35 9 14.516129 16.129032
40 13 20.967742 37.096774
45 16 25.806452 62.903226
50 13 20.967742 83.870968
55 6 9.677419 93.548387
60 3 4.838710 98.387097
65 0 0.000000 98.387097
70 0 0.000000 98.387097
75 0 0.000000 98.387097
80 0 0.000000 98.387097
85 0 0.000000 98.387097
90 1 1.612903 100.000000
>


129 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 21:26:02.54 ID:c8glUN+E

BGと試料の比較

1. n = 120 BG 繰り返し数 =3
gr1 <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26 ,
39,42,40,37,48,43,39,32,31,28,35,25,37,39,33,42,47,35,35,32,41,34,35,40,52,43,36,35,29,29,36,44,43,32,57,26,36,30,39,40,47,38 ,
34,29,36,32,34,40,45,30,48,30,36,34,33,24,44,35,48,35,58,34,42,48,37,47,34,45,32,37,38,46,29,31,39,41,34,48,26,43)

2. n = 63 栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥 繰り返し数 =2
gr2 <- c( 47,49,50,42,41,42,40,45,45,44,51,57,64,48,48,44,45,62,36,47,56,52,43,90, 52,52,43,53,47,38 ,
47,45,43,54,50,54,43,38,50,42,57,46,50,36,39,37,28,59,44,60,53,47,48,55,57,38,36,48,49,51,42,39)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -8.8018, 自由度 = 180, P値 = 1.091e-15
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -12.763775 -8.088913
標本推定値:
平均値x 平均値y
37.28333 47.70968
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -8.0535, 自由度 = 97.673, P値 = 1.987e-12
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -12.99560 -7.85709
標本推定値:
平均値x 平均値y
37.28333 47.70968
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.5669, 第1自由度 = 119, 第2自由度 = 61, P値 = 0.008592
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.3594871 0.8663611
標本推定値:
分散比
0.5669306
有意。分散が異なるので(Welchの方法)を使用する。

>


130 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 21:31:15.95 ID:c8glUN+E

3.補足コメント
「栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥」99.3wg, 11.9 dg
47.70968 - 37.28333 = 10.42635 CPM (4.90Bq)
4.90 * 1000 / 99.3 = 49.3 Bq/kg
4.90 * 1000 / 11.9 = 411 Bq/kg
カリウム 170mg/100g( http://www42.tok2.com/home/syokuhin/itigo.html )より、5.2Bq/kg

草イチゴ、食用になる野イチゴです。道路沿いなどの藪の中に生育する多年生つる草で
梅雨の頃に実ります。日溜りの良い傾斜地の下のほうに生育しやすいので、線量が比較的高い場所に生育しやすいです。
地域によっては、異なる場所に生育している場合があります。
園芸板 【野苺】ワイルドストロベリー【ノイチゴ】 10株目
http://awabi.2ch.net/test/read.cgi/engei/1277203312/l50

131 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 22:15:49.43 ID:c8glUN+E

1.測定対象
「栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥」の分析
45.5wg, 10.1 dg(猫により試料の一部消失)

2.測定結果
1. n=55 糊台
x <- c( 43,37,31,43,26,42,40,29,34,27,38,45,45,38,40,32,36,40,33,41,35,35,28,33,35,32,28,37,28,32,37,38,33,33,39,36,39,37,28,36,23,34,40,36,31,37,36,42,45,40,33,41,33,34,45)

2. n=33 栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥
x <- c( 51,57,42,47,44,36,49,42,50,34,39,47,61,44,51,55,43,44,55,35,47,43,48,45,48,39,32,31,35,40,41,28,46)

3. n=30 糊台
x <- c( 37,38,34,32,49,42,24,34,41,41,33,38,28,43,49,44,37,41,37,29,29,41,38,37,34,40,33,34,45,34)

4. n=34 栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥
x <- c( 42,44,37,39,41,62,50,42,38,30,42,36,39,37,42,48,47,46,41,35,44,33,39,56,42,33,42,43,57,38,44,48,38,40)

5. n=40 糊台
x <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)


132 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 22:16:33.50 ID:c8glUN+E

4. データ貼り付け
全体の分析
x <- c( 43,37,31,43,26,42,40,29,34,27,38,45,45,38,40,32,36,40,33,41,35,35,28,33,35,32,28,37,28,32,37,38,33,33,39,36,39,37,28,36,23,34,40,36,31,37,36,42,45,40,33,41,33,34,45 ,
51,57,42,47,44,36,49,42,50,34,39,47,61,44,51,55,43,44,55,35,47,43,48,45,48,39,32,31,35,40,41,28,46 ,
37,38,34,32,49,42,24,34,41,41,33,38,28,43,49,44,37,41,37,29,29,41,38,37,34,40,33,34,45,34 ,
42,44,37,39,41,62,50,42,38,30,42,36,39,37,42,48,47,46,41,35,44,33,39,56,42,33,42,43,57,38,44,48,38,40 ,
41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 38.67708
> var(x)
[1] 49.46586
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 12.9571, 第1自由度 = 4, 第2自由度 = 187, P値 = 2.479e-09
有意。群間に差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 6.9181, 自由度 = 4, P値 = 0.1403
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 11.041, 第1自由度 = 4.000, 第2自由度 = 84.489, P値 = 2.99e-07
有意。群間に差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.041667 1.041667
25 15 7.812500 8.854167
30 39 20.312500 29.166667
35 54 28.125000 57.291667
40 48 25.000000 82.291667
45 22 11.458333 93.750000
50 5 2.604167 96.354167
55 5 2.604167 98.958333
60 2 1.041667 100.000000
>


133 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 22:17:16.27 ID:c8glUN+E

BGと試料の比較
x <- c( 43,37,31,43,26,42,40,29,34,27,38,45,45,38,40,32,36,40,33,41,35,35,28,33,35,32,28,37,28,32,37,38,33,33,39,36,39,37,28,36,23,34,40,36,31,37,36,42,45,40,33,41,33,34,45 ,
51,57,42,47,44,36,49,42,50,34,39,47,61,44,51,55,43,44,55,35,47,43,48,45,48,39,32,31,35,40,41,28,46 ,
37,38,34,32,49,42,24,34,41,41,33,38,28,43,49,44,37,41,37,29,29,41,38,37,34,40,33,34,45,34 ,
42,44,37,39,41,62,50,42,38,30,42,36,39,37,42,48,47,46,41,35,44,33,39,56,42,33,42,43,57,38,44,48,38,40 ,
41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 49.8364, 第1自由度 = 1, 第2自由度 = 190, P値 = 3.052e-11
有意。試料とバックグランンドに差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 5.3927, 自由度 = 1, P値 = 0.02022
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 43.0362, 第1自由度 = 1.000, 第2自由度 = 110.067, P値 = 1.813e-09
有意。試料とバックグランンドに差がある。

>



134 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 22:18:02.41 ID:c8glUN+E

繰り返しによる影響

1. n = 125 BG 繰り返し数 =3
x <- c( 43,37,31,43,26,42,40,29,34,27,38,45,45,38,40,32,36,40,33,41,35,35,28,33,35,32,28,37,28,32,37,38,33,33,39,36,39,37,28,36,23,34,40,36,31,37,36,42,45,40,33,41,33,34,45 ,
37,38,34,32,49,42,24,34,41,41,33,38,28,43,49,44,37,41,37,29,29,41,38,37,34,40,33,34,45,34 ,
41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 36.336
> var(x)
[1] 32.27329
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.5928, 第1自由度 = 2, 第2自由度 = 122, P値 = 0.5544
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.2602, 自由度 = 2, P値 = 0.5325
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.5987, 第1自由度 = 2.00, 第2自由度 = 68.11, P値 = 0.5524
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.6 1.6
25 14 11.2 12.8
30 33 26.4 39.2
35 39 31.2 70.4
40 26 20.8 91.2
45 10 8.0 99.2
50 1 0.8 100.0
>


135 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 22:18:46.18 ID:c8glUN+E

2. n = 67 栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥 繰り返し数 =2
x <- c( 51,57,42,47,44,36,49,42,50,34,39,47,61,44,51,55,43,44,55,35,47,43,48,45,48,39,32,31,35,40,41,28,46 ,
42,44,37,39,41,62,50,42,38,30,42,36,39,37,42,48,47,46,41,35,44,33,39,56,42,33,42,43,57,38,44,48,38,40)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 43.04478
> var(x)
[1] 52.77069
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.9195, 第1自由度 = 1, 第2自由度 = 65, P値 = 0.3412
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.4905, 自由度 = 1, P値 = 0.4837
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.916, 第1自由度 = 1.000, 第2自由度 = 63.507, P値 = 0.3421
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 1 1.492537 1.492537
30 6 8.955224 10.447761
35 15 22.388060 32.835821
40 22 32.835821 65.671642
45 12 17.910448 83.582090
50 4 5.970149 89.552239
55 5 7.462687 97.014925
60 2 2.985075 100.000000
>


136 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 22:19:31.14 ID:c8glUN+E

BGと試料の比較

1. n = 125 BG 繰り返し数 =3
gr1 <- c( 43,37,31,43,26,42,40,29,34,27,38,45,45,38,40,32,36,40,33,41,35,35,28,33,35,32,28,37,28,32,37,38,33,33,39,36,39,37,28,36,23,34,40,36,31,37,36,42,45,40,33,41,33,34,45 ,
37,38,34,32,49,42,24,34,41,41,33,38,28,43,49,44,37,41,37,29,29,41,38,37,34,40,33,34,45,34 ,
41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)

2. n = 67 栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥 繰り返し数 =2
gr2 <- c( 51,57,42,47,44,36,49,42,50,34,39,47,61,44,51,55,43,44,55,35,47,43,48,45,48,39,32,31,35,40,41,28,46 ,
42,44,37,39,41,62,50,42,38,30,42,36,39,37,42,48,47,46,41,35,44,33,39,56,42,33,42,43,57,38,44,48,38,40)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -7.0595, 自由度 = 190, P値 = 3.052e-11
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -8.583310 -4.834242
標本推定値:
平均値x 平均値y
36.33600 43.04478
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -6.5602, 自由度 = 110.067, P値 = 1.813e-09
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -8.735410 -4.682142
標本推定値:
平均値x 平均値y
36.33600 43.04478
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.6116, 第1自由度 = 124, 第2自由度 = 66, P値 = 0.01904
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.3941570 0.9228036
標本推定値:
分散比
0.611576
有意。分散が異なるので(Welchの方法)を使用する。

137 名無しに影響はない</b>(栃木県)<b>
2012/08/02(木) 22:20:22.57 ID:c8glUN+E

3.補足コメント
「栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥」45.5wg, 10.1 dg(猫が保存していた袋を破ったため試料の一部消失)
43.04478 - 36.33600 = 6.708782 CPM (3.15Bq)
3.15 * 1000 / 45.5 = 69.3Bq/kg
3.15 * 1000 / 10.1 = 312Bq/kg
カリウム 234mg/100g ( http://www.momo-kuwa.com/jiten.html ) - 293mg/100g( http://www.kai-shokokai.jp/kuwanomi/ingredient/ )より、7.2-9.5Bq/kg

桑の実は食用になります。草イチゴにしても桑の実にしても、現地に出かけて、その場で口に放り込むという食べ方をします。
http://pixta.jp/tags/%E6%A1%91%E3%81%AE%E5%AE%9Fを見ると黒っぽい実が多いのですが、熟しても赤い実のクワの実です。


138 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 19:34:43.21 ID:QY4jmAJS

1.測定対象
「栃木県産ジャガイモ 30.5wg 9.8dg 2012.07.06」の分析

2.測定結果
1. n=35 糊台
x <- c( 49,34,38,36,35,53,26,43,42,30,39,35,31,33,38,32,35,43,52,40,41,36,42,43,41,42,33,34,35,41,31,27,36,35,42)

2. n=46 栃木県産ジャガイモ 30.5wg 9.8dg 2012.07.06 6日間乾燥
x <- c( 40,35,46,43,41,50,37,55,47,39,43,43,54,50,40,59,45,32,44,43,51,43,45,48,38,38,36,41,40,52,46,40,43,40,50,38,37,43,42,43,43,38,44,31,49,41)

3. n=74 糊台
x <- c( 35,45,35,37,42,39,32,45,45,39,31,52,34,42,39,35,32,35,32,39,34,28,34,34,35,36,34,44,37,35,42,42,35,32,26,38,
30,39,36,33,41,41,41,35,48,48,43,52,44,58,33,37,36,52,32,32,25,30,50,37,30,40,35,36,43,43,39,53,38,39,29,40,35,41)

4. n=33 栃木県産ジャガイモ 30.5wg 9.8dg 2012.07.06 6日間乾燥
x <- c( 39,53,44,36,50,42,59,49,30,44,35,49,45,61,37,36,53,35,45,56,56,44,45,53,45,48,51,35,42,34,47,47,37)

5. n=30 糊台
x <- c( 33,28,28,36,42,43,40,28,38,35,42,45,36,40,34,30,42,43,39,37,34,44,42,32,47,46,55,42,34,45)


139 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 19:35:43.86 ID:QY4jmAJS

4. データ貼り付け
全体の分析
x <- c( 49,34,38,36,35,53,26,43,42,30,39,35,31,33,38,32,35,43,52,40,41,36,42,43,41,42,33,34,35,41,31,27,36,35,42 ,
40,35,46,43,41,50,37,55,47,39,43,43,54,50,40,59,45,32,44,43,51,43,45,48,38,38,36,41,40,52,46,40,43,40,50,38,37,43,42,43,43,38,44,31,49,41 ,
35,45,35,37,42,39,32,45,45,39,31,52,34,42,39,35,32,35,32,39,34,28,34,34,35,36,34,44,37,35,42,42,35,32,26,38,30,
39,36,33,41,41,41,35,48,48,43,52,44,58,33,37,36,52,32,32,25,30,50,37,30,40,35,36,43,43,39,53,38,39,29,40,35,41 ,
39,53,44,36,50,42,59,49,30,44,35,49,45,61,37,36,53,35,45,56,56,44,45,53,45,48,51,35,42,34,47,47,37 ,
33,28,28,36,42,43,40,28,38,35,42,45,36,40,34,30,42,43,39,37,34,44,42,32,47,46,55,42,34,45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 40.25688
> var(x)
[1] 50.21021
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 9.9357, 第1自由度 = 4, 第2自由度 = 213, P値 = 2.169e-07
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 3.7347, 自由度 = 4, P値 = 0.4431
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 9.1963, 第1自由度 = 4.000, 第2自由度 = 89.627, P値 = 2.848e-06
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 9 4.1284404 4.12844
30 35 16.0550459 20.18349
35 61 27.9816514 48.16514
40 61 27.9816514 76.14679
45 26 11.9266055 88.07339
50 18 8.2568807 96.33028
55 7 3.2110092 99.54128
60 1 0.4587156 100.00000
>


140 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 19:36:31.46 ID:QY4jmAJS

BGと試料の比較
x <- c( 49,34,38,36,35,53,26,43,42,30,39,35,31,33,38,32,35,43,52,40,41,36,42,43,41,42,33,34,35,41,31,27,36,35,42 ,
40,35,46,43,41,50,37,55,47,39,43,43,54,50,40,59,45,32,44,43,51,43,45,48,38,38,36,41,40,52,46,40,43,40,50,38,37,43,42,43,43,38,44,31,49,41 ,
35,45,35,37,42,39,32,45,45,39,31,52,34,42,39,35,32,35,32,39,34,28,34,34,35,36,34,44,37,35,42,42,35,32,26,38,30,39,36,33,
41,41,41,35,48,48,43,52,44,58,33,37,36,52,32,32,25,30,50,37,30,40,35,36,43,43,39,53,38,39,29,40,35,41 ,
39,53,44,36,50,42,59,49,30,44,35,49,45,61,37,36,53,35,45,56,56,44,45,53,45,48,51,35,42,34,47,47,37 ,
33,28,28,36,42,43,40,28,38,35,42,45,36,40,34,30,42,43,39,37,34,44,42,32,47,46,55,42,34,45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 38.3633, 第1自由度 = 1, 第2自由度 = 216, P値 = 2.926e-09
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.323, 自由度 = 1, P値 = 0.5698
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 37.1783, 第1自由度 = 1.000, 第2自由度 = 154.711, P値 = 8.26e-09
有意。試料とバックグラウンドに差異がある。

>


141 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 19:37:32.72 ID:QY4jmAJS

繰り返しによる影響

1. n = 139 BG 繰り返し数 =3
x <- c( 49,34,38,36,35,53,26,43,42,30,39,35,31,33,38,32,35,43,52,40,41,36,42,43,41,42,33,34,35,41,31,27,36,35,42 ,
35,45,35,37,42,39,32,45,45,39,31,52,34,42,39,35,32,35,32,39,34,28,34,34,35,36,34,44,37,35,42,42,35,32,26,38,30,39,
36,33,41,41,41,35,48,48,43,52,44,58,33,37,36,52,32,32,25,30,50,37,30,40,35,36,43,43,39,53,38,39,29,40,35,41 ,
33,28,28,36,42,43,40,28,38,35,42,45,36,40,34,30,42,43,39,37,34,44,42,32,47,46,55,42,34,45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.18705
> var(x)
[1] 41.05172
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.1462, 第1自由度 = 2, 第2自由度 = 136, P値 = 0.8641
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.1473, 自由度 = 2, P値 = 0.929
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.1509, 第1自由度 = 2.000, 第2自由度 = 66.709, P値 = 0.8602
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 9 6.474820 6.47482
30 31 22.302158 28.77698
35 44 31.654676 60.43165
40 36 25.899281 86.33094
45 10 7.194245 93.52518
50 7 5.035971 98.56115
55 2 1.438849 100.00000
>


142 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 19:38:17.31 ID:QY4jmAJS

2. n = 79 栃木県産ジャガイモ 30.5wg 9.8dg 2012.07.06 6日間乾燥 繰り返し数 =2
x <- c( 40,35,46,43,41,50,37,55,47,39,43,43,54,50,40,59,45,32,44,43,51,43,45,48,38,38,36,41,40,52,46,40,43,40,50,38,37,43,42,43,43,38,44,31,49,41 ,
39,53,44,36,50,42,59,49,30,44,35,49,45,61,37,36,53,35,45,56,56,44,45,53,45,48,51,35,42,34,47,47,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 43.89873
> var(x)
[1] 45.98961
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.2622, 第1自由度 = 1, 第2自由度 = 77, P値 = 0.2647
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 3.3429, 自由度 = 1, P値 = 0.0675
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.1459, 第1自由度 = 1.000, 第2自由度 = 56.064, P値 = 0.289
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
30 4 5.063291 5.063291
35 17 21.518987 26.582278
40 25 31.645570 58.227848
45 16 20.253165 78.481013
50 11 13.924051 92.405063
55 5 6.329114 98.734177
60 1 1.265823 100.000000
>


143 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 19:38:48.12 ID:QY4jmAJS

BGと試料の比較

1. n = 139 BG 繰り返し数 =3
gr1 <- c( 49,34,38,36,35,53,26,43,42,30,39,35,31,33,38,32,35,43,52,40,41,36,42,43,41,42,33,34,35,41,31,27,36,35,42 ,
35,45,35,37,42,39,32,45,45,39,31,52,34,42,39,35,32,35,32,39,34,28,34,34,35,36,34,44,37,35,42,42,35,32,26,38,30,39,36,
33,41,41,41,35,48,48,43,52,44,58,33,37,36,52,32,32,25,30,50,37,30,40,35,36,43,43,39,53,38,39,29,40,35,41 ,
33,28,28,36,42,43,40,28,38,35,42,45,36,40,34,30,42,43,39,37,34,44,42,32,47,46,55,42,34,45)

2. n = 79 栃木県産ジャガイモ 30.5wg 9.8dg 2012.07.06 6日間乾燥 繰り返し数 =2
gr2 <- c( 40,35,46,43,41,50,37,55,47,39,43,43,54,50,40,59,45,32,44,43,51,43,45,48,38,38,36,41,40,52,46,40,43,40,50,38,37,43,42,43,43,38,44,31,49,41 ,
39,53,44,36,50,42,59,49,30,44,35,49,45,61,37,36,53,35,45,56,56,44,45,53,45,48,51,35,42,34,47,47,37)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -6.1938, 自由度 = 216, P値 = 2.926e-09
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -7.529266 -3.894101
標本推定値:
平均値x 平均値y
38.18705 43.89873
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -6.0974, 自由度 = 154.711, P値 = 8.26e-09
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -7.562136 -3.861231
標本推定値:
平均値x 平均値y
38.18705 43.89873
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8926, 第1自由度 = 138, 第2自由度 = 78, P値 = 0.5572
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5947746 1.3106013
標本推定値:
分散比
0.8926301
有意。分散が異なるので(Welchの方法)を使用する。

>


144 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 19:39:18.55 ID:QY4jmAJS

43.89873 - 38.18705 = 5.711681 CPM (2.68Bq)
2.69 * 1000 / 30.5 = 88.0 Bq/wkg
2.69 * 1000 / 9.8 = 273 Bq/dkg


145 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 20:38:00.69 ID:QY4jmAJS

1.測定対象
「栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得」の分析

2.測定結果
1. n=30 糊台
x <- c( 34,39,42,34,27,43,26,36,45,33,44,48,31,36,33,41,34,34,28,36,45,41,32,37,37,40,34,39,41,44)

2. n=30 栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得
x <- c( 31,29,50,56,33,53,36,51,45,40,47,43,38,34,37,46,37,37,37,35,43,41,47,47,43,34,30,31,36,51)

3. n=30 糊台
x <- c( 34,47,35,39,34,38,41,24,39,52,47,33,38,34,32,29,40,39,39,24,38,35,51,31,40,24,45,31,46,30)

4. n=31 栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得
x <- c( 40,34,32,47,43,37,53,48,55,43,40,37,52,43,49,47,42,44,54,51,37,41,39,39,39,41,42,43,47,34,42)

5. n=30 糊台
x <- c( 39,29,47,48,33,44,43,34,35,27,27,31,35,36,45,36,39,43,44,28,43,29,39,38,39,44,33,37,42,36)


146 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 20:38:58.47 ID:QY4jmAJS

4. データ貼り付け
全体の分析
x <- c( 34,39,42,34,27,43,26,36,45,33,44,48,31,36,33,41,34,34,28,36,45,41,32,37,37,40,34,39,41,44 ,
31,29,50,56,33,53,36,51,45,40,47,43,38,34,37,46,37,37,37,35,43,41,47,47,43,34,30,31,36,51 ,
34,47,35,39,34,38,41,24,39,52,47,33,38,34,32,29,40,39,39,24,38,35,51,31,40,24,45,31,46,30 ,
40,34,32,47,43,37,53,48,55,43,40,37,52,43,49,47,42,44,54,51,37,41,39,39,39,41,42,43,47,34,42 ,
39,29,47,48,33,44,43,34,35,27,27,31,35,36,45,36,39,43,44,28,43,29,39,38,39,44,33,37,42,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 39.06623
> var(x)
[1] 47.64892
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 5.1946, 第1自由度 = 4, 第2自由度 = 146, P値 = 0.0006104
有意。群間に差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 3.7831, 自由度 = 4, P値 = 0.4362
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 5.6152, 第1自由度 = 4.000, 第2自由度 = 72.723, P値 = 0.0005383
有意。群間に差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 3 1.986755 1.986755
25 10 6.622517 8.609272
30 30 19.867550 28.476821
35 41 27.152318 55.629139
40 35 23.178808 78.807947
45 20 13.245033 92.052980
50 10 6.622517 98.675497
55 2 1.324503 100.000000
>


147 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 20:39:44.32 ID:QY4jmAJS

BGと試料の比較
x <- c( 34,39,42,34,27,43,26,36,45,33,44,48,31,36,33,41,34,34,28,36,45,41,32,37,37,40,34,39,41,44 ,
31,29,50,56,33,53,36,51,45,40,47,43,38,34,37,46,37,37,37,35,43,41,47,47,43,34,30,31,36,51 ,
34,47,35,39,34,38,41,24,39,52,47,33,38,34,32,29,40,39,39,24,38,35,51,31,40,24,45,31,46,30 ,
40,34,32,47,43,37,53,48,55,43,40,37,52,43,49,47,42,44,54,51,37,41,39,39,39,41,42,43,47,34,42 ,
39,29,47,48,33,44,43,34,35,27,27,31,35,36,45,36,39,43,44,28,43,29,39,38,39,44,33,37,42,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 18.6345, 第1自由度 = 1, 第2自由度 = 149, P値 = 2.873e-05
有意。試料とバックグラウンドに差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.3483, 自由度 = 1, P値 = 0.5551
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 18.1399, 第1自由度 = 1.000, 第2自由度 = 122.827, P値 = 4.043e-05
有意。試料とバックグラウンドに差がある。

>


148 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 20:40:31.95 ID:QY4jmAJS

繰り返しによる影響

1. n = 90 BG 繰り返し数 =3
x <- c( 34,39,42,34,27,43,26,36,45,33,44,48,31,36,33,41,34,34,28,36,45,41,32,37,37,40,34,39,41,44 ,
34,47,35,39,34,38,41,24,39,52,47,33,38,34,32,29,40,39,39,24,38,35,51,31,40,24,45,31,46,30 ,
39,29,47,48,33,44,43,34,35,27,27,31,35,36,45,36,39,43,44,28,43,29,39,38,39,44,33,37,42,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 37.17778
> var(x)
[1] 40.21523
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0408, 第1自由度 = 2, 第2自由度 = 87, P値 = 0.96
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.3543, 自由度 = 2, P値 = 0.3082
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0386, 第1自由度 = 2.000, 第2自由度 = 57.328, P値 = 0.9621
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 3 3.333333 3.333333
25 9 10.000000 13.333333
30 21 23.333333 36.666667
35 27 30.000000 66.666667
40 18 20.000000 86.666667
45 10 11.111111 97.777778
50 2 2.222222 100.000000
>


149 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 20:41:17.10 ID:QY4jmAJS

2. n = 61 栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得 繰り返し数 =2
x <- c( 31,29,50,56,33,53,36,51,45,40,47,43,38,34,37,46,37,37,37,35,43,41,47,47,43,34,30,31,36,51 ,
40,34,32,47,43,37,53,48,55,43,40,37,52,43,49,47,42,44,54,51,37,41,39,39,39,41,42,43,47,34,42)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 41.85246
> var(x)
[1] 46.22787
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.0378, 第1自由度 = 1, 第2自由度 = 59, P値 = 0.1587
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.2452, 自由度 = 1, P値 = 0.2645
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 2.0239, 第1自由度 = 1.000, 第2自由度 = 55.852, P値 = 0.1604
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 1 1.639344 1.639344
30 9 14.754098 16.393443
35 14 22.950820 39.344262
40 17 27.868852 67.213115
45 10 16.393443 83.606557
50 8 13.114754 96.721311
55 2 3.278689 100.000000
>


150 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 20:41:55.96 ID:QY4jmAJS

BGと試料の比較

1. n = 90 BG 繰り返し数 =3
gr1 <- c( 34,39,42,34,27,43,26,36,45,33,44,48,31,36,33,41,34,34,28,36,45,41,32,37,37,40,34,39,41,44 ,
34,47,35,39,34,38,41,24,39,52,47,33,38,34,32,29,40,39,39,24,38,35,51,31,40,24,45,31,46,30 ,
39,29,47,48,33,44,43,34,35,27,27,31,35,36,45,36,39,43,44,28,43,29,39,38,39,44,33,37,42,36)

2. n = 61 栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得 繰り返し数 =2
gr2 <- c( 31,29,50,56,33,53,36,51,45,40,47,43,38,34,37,46,37,37,37,35,43,41,47,47,43,34,30,31,36,51 ,
40,34,32,47,43,37,53,48,55,43,40,37,52,43,49,47,42,44,54,51,37,41,39,39,39,41,42,43,47,34,42)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -4.3168, 自由度 = 149, P値 = 2.873e-05
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -6.814527 -2.534835
標本推定値:
平均値x 平均値y
37.17778 41.85246
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -4.2591, 自由度 = 122.827, P値 = 4.043e-05
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -6.847293 -2.502069
標本推定値:
平均値x 平均値y
37.17778 41.85246
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8699, 第1自由度 = 89, 第2自由度 = 60, P値 = 0.5448
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5396328 1.3726646
標本推定値:
分散比
0.8699348
有意。分散が異なるので(Welchの方法)を使用する。

>


151 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 20:43:09.78 ID:QY4jmAJS

3.補足コメント
41.85246 - 37.17778 = 4.674679 CPM (2.20Bq)
2. n = 61 栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得 繰り返し数 =2
2.20 * 1000 / 3.5 = 627 Bq/wkg
2.20 * 1000 / 2.0 = 1099 Bq/dkg

ホウノキは、夏場防腐剤として使われることがあります。

152 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 21:39:36.06 ID:QY4jmAJS

1.測定対象
「栃木県産ハリキリの葉 17.5wg 5.6dg 2012.07.12採取」の分析
柏餅用の葉として使用する。防腐剤が含まれているので、夏の保存食に使われる。

2.測定結果
1. n=30 糊台
x <- c( 40, 38, 27, 37, 36, 32, 40, 35, 29, 44, 35, 36, 40, 39, 37, 39, 33, 31, 35, 39, 31, 36, 38, 48, 32, 48, 35, 42, 45, 28)

2. n=30 栃木県産ハリキリ 17.5wg 5.6dg 2012.07.12採取
x <- c( 49, 50, 55, 47, 61, 43, 52, 45, 53, 55, 49, 43, 49, 54, 66, 48, 46, 56, 52, 49, 54, 59, 47, 65, 52, 56, 57, 55, 57, 46)

3. n=30 糊台
x <- c( 38, 35, 36, 46, 41, 29, 33, 35, 34, 29, 31, 47, 39, 46, 37, 51, 38, 34, 44, 45, 54, 45, 37, 51, 38, 25, 26, 34, 29, 45)

4. n=30 栃木県産ハリキリ 17.5wg 5.6dg 2012.07.12採取
x <- c( 47, 60, 55, 46, 55, 64, 48, 54, 64, 77, 48, 47, 44, 59, 52, 63, 55, 61, 64, 54, 38, 45, 73, 45, 58, 56, 60, 56, 50, 54)

5. n=30 糊台
x <- c( 36, 29, 27, 34, 27, 35, 30, 34, 28, 36, 25, 35, 23, 31, 30, 28, 37, 31, 35, 29, 24, 32, 30, 41, 34, 34, 29, 30, 22, 27)


153 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 21:40:32.43 ID:QY4jmAJS

全体の分析
x <- c( 40,38,27,37,36,32,40,35,29,44,35,36,40,39,37,39,33,31,35,39,31,36,38,48,32,48,35,42,45,28 ,
49,50,55,47,61,43,52,45,53,55,49,43,49,54,66,48,46,56,52,49,54,59,47,65,52,56,57,55,57,46 ,
38,35,36,46,41,29,33,35,34,29,31,47,39,46,37,51,38,34,44,45,54,45,37,51,38,25,26,34,29,45 ,
47,60,55,46,55,64,48,54,64,77,48,47,44,59,52,63,55,61,64,54,38,45,73,45,58,56,60,56,50,54 ,
36,29,27,34,27,35,30,34,28,36,25,35,23,31,30,28,37,31,35,29,24,32,30,41,34,34,29,30,22,27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 42.68
> var(x)
[1] 130.9305
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 76.4086, 第1自由度 = 4, 第2自由度 = 145, P値 < 2.2e-16
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 16.3109, 自由度 = 4, P値 = 0.002629
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 88.0846, 第1自由度 = 4.000, 第2自由度 = 71.577, P値 < 2.2e-16
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 3 2.0000000 2.00000
25 17 11.3333333 13.33333
30 21 14.0000000 27.33333
35 30 20.0000000 47.33333
40 11 7.3333333 54.66667
45 26 17.3333333 72.00000
50 15 10.0000000 82.00000
55 15 10.0000000 92.00000
60 8 5.3333333 97.33333
65 2 1.3333333 98.66667
70 1 0.6666667 99.33333
75 1 0.6666667 100.00000
>


154 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 21:41:17.15 ID:QY4jmAJS

BGと試料の比較
x <- c( 40,38,27,37,36,32,40,35,29,44,35,36,40,39,37,39,33,31,35,39,31,36,38,48,32,48,35,42,45,28 ,
49,50,55,47,61,43,52,45,53,55,49,43,49,54,66,48,46,56,52,49,54,59,47,65,52,56,57,55,57,46 ,
38,35,36,46,41,29,33,35,34,29,31,47,39,46,37,51,38,34,44,45,54,45,37,51,38,25,26,34,29,45 ,
47,60,55,46,55,64,48,54,64,77,48,47,44,59,52,63,55,61,64,54,38,45,73,45,58,56,60,56,50,54 ,
36,29,27,34,27,35,30,34,28,36,25,35,23,31,30,28,37,31,35,29,24,32,30,41,34,34,29,30,22,27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 76.4086, 第1自由度 = 4, 第2自由度 = 145, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 16.3109, 自由度 = 4, P値 = 0.002629
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 88.0846, 第1自由度 = 4.000, 第2自由度 = 71.577, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

>


155 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 21:42:03.49 ID:QY4jmAJS

繰り返しによる影響

1. n = 90 BG 繰り返し数 =3
x <- c( 40,38,27,37,36,32,40,35,29,44,35,36,40,39,37,39,33,31,35,39,31,36,38,48,32,48,35,42,45,28 ,
38,35,36,46,41,29,33,35,34,29,31,47,39,46,37,51,38,34,44,45,54,45,37,51,38,25,26,34,29,45 ,
36,29,27,34,27,35,30,34,28,36,25,35,23,31,30,28,37,31,35,29,24,32,30,41,34,34,29,30,22,27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 35.33333
> var(x)
[1] 45.75281
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 13.6996, 第1自由度 = 2, 第2自由度 = 87, P値 = 6.725e-06
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 8.7621, 自由度 = 2, P値 = 0.01251
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 16.8141, 第1自由度 = 2.000, 第2自由度 = 55.844, P値 = 1.923e-06
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 3 3.333333 3.333333
25 17 18.888889 22.222222
30 21 23.333333 45.555556
35 29 32.222222 77.777778
40 8 8.888889 86.666667
45 9 10.000000 96.666667
50 3 3.333333 100.000000
>


156 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 21:42:49.57 ID:QY4jmAJS

2. n = 60 栃木県産ハリキリ 17.5wg 5.6dg 2012.07.12採取 繰り返し数 =2
x <- c( 49,50,55,47,61,43,52,45,53,55,49,43,49,54,66,48,46,56,52,49,54,59,47,65,52,56,57,55,57,46 ,
47,60,55,46,55,64,48,54,64,77,48,47,44,59,52,63,55,61,64,54,38,45,73,45,58,56,60,56,50,54)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 53.7
> var(x)
[1] 55.80678
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.0436, 第1自由度 = 1, 第2自由度 = 58, P値 = 0.1582
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 4.2465, 自由度 = 1, P値 = 0.03933
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 2.0436, 第1自由度 = 1.000, 第2自由度 = 50.949, P値 = 0.1589
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
35 1 1.666667 1.666667
40 3 5.000000 6.666667
45 17 28.333333 35.000000
50 12 20.000000 55.000000
55 15 25.000000 80.000000
60 8 13.333333 93.333333
65 2 3.333333 96.666667
70 1 1.666667 98.333333
75 1 1.666667 100.000000
>


157 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 21:43:32.54 ID:QY4jmAJS

BGと試料の比較

1. n = 90 BG 繰り返し数 =3
gr1 <- c( 40,38,27,37,36,32,40,35,29,44,35,36,40,39,37,39,33,31,35,39,31,36,38,48,32,48,35,42,45,28 ,
38,35,36,46,41,29,33,35,34,29,31,47,39,46,37,51,38,34,44,45,54,45,37,51,38,25,26,34,29,45 ,
36,29,27,34,27,35,30,34,28,36,25,35,23,31,30,28,37,31,35,29,24,32,30,41,34,34,29,30,22,27)

2. n = 60 栃木県産ハリキリ 17.5wg 5.6dg 2012.07.12採取 繰り返し数 =2
gr2 <- c( 49,50,55,47,61,43,52,45,53,55,49,43,49,54,66,48,46,56,52,49,54,59,47,65,52,56,57,55,57,46 ,
47,60,55,46,55,64,48,54,64,77,48,47,44,59,52,63,55,61,64,54,38,45,73,45,58,56,60,56,50,54)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -15.622, 自由度 = 148, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -20.68997 -16.04336
標本推定値:
平均値x 平均値y
35.33333 53.70000
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -15.3137, 自由度 = 117.792, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -20.74178 -15.99155
標本推定値:
平均値x 平均値y
35.33333 53.70000
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8198, 第1自由度 = 89, 第2自由度 = 59, P値 = 0.3927
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5070552 1.2960152
標本推定値:
分散比
0.8198432
有意。分散が異なるので(Welchの方法)を使用する。

>


158 名無しに影響はない</b>(栃木県)<b>
2012/08/03(金) 21:48:28.68 ID:QY4jmAJS

3.補足コメント
栃木県産ハリキリ 17.5wg 5.6dg 2012.07.12採取
柏餅用の葉として使用する。防腐剤が含まれているので、夏の保存食に使われる。
53.70000 - 35.33333 = 18.36667CPM (8.63Bq)
.63 * 1000 / 17.5 = 493 Bq/kg
8.63 * 1000 / 5.6 = 1540 Bq/kg

159 名無しに影響はない</b>(栃木県)<b>
2012/08/15(水) 11:35:56.78 ID:iRbwsHGb

近所の農家から、タバコの廃棄葉を入手しようとしたら、
契約によりできません
と断られてしまった。
タバコは、重金属を集める性質がある(Pb, Cdの灰中濃度が高い)ので
ウラン系列の濃度を知る指標に使用かと思ったが、うまくいかなかった。
Pb-Bi等ウラン系列の核種を蓄積する性質のある植物を知っていたら知らせて欲しい。

現在は、農産加工品、つまり、塩漬けによる線量低下を測定しようとしているが
はっきり言って下がってくれない。
乾重量あたり1000-6000Bq/kgが300-1000位(1/3-1/10)に落ちるだけで、
湿重量40Bq/kg (地震前の輸入汚染食品を国産品で薄めた後の国内平均濃度)までは下がらない。
線量測定まで手が回らない状態。
結構高線量なので、手が荒れやすい。食品を扱うときには手袋が必須。
素手で船頭やって、乳酸を絞った後、手を洗って拭いて、インスに手を触れたらば
カウントが倍に上がった(30-40→60-70)。
漬物をいじっている間に測定ができれば良いが、
漬物をいじっているときには漬物による汚染対策でインスを使ってしまい測定できない状態。

漏れ一人が測定するのではなく、他の人による調査をキボンヌ。

160 名無しに影響はない</b>(やわらか銀行)<b>
2012/08/15(水) 19:35:48.45 ID:HwT/cqut

タバコの「エコー」「わかば」「しんせい」「ゴールデンバット」は200円です。
海外製タバコ葉を前に測ったところ、汚染の疑いがありました。タバコにはもともとポロニウムが含まれています。


161 名無しに影響はない</b>(栃木県)<b>
2012/09/02(日) 21:14:53.11 ID:lBcfv1aS

ニンジン ゆで(食塩2%水) 2012.08.13収穫 116Bq/wkg 971Bq/dkg → 26.6Bq/wkg 256Bq/dkg

キャベツ 塩漬け 2012.07.20収穫 193Bq/wkg 1980Bq/dkg → (不明) 868Bq/dkg
 塩漬け 2012.08.03 → (不明) 593Bq/dkg
 塩漬け 2012.08.13 → (不明) 51Bq/dkg
これは、キャベツを千切りにして、流水で1時間さらし、塩漬け(10-20%食塩)した。
その後、約1週間放置して、圧搾し漬け汁を絞り廃棄。流水で24時間さらして、塩漬け(10-20%食塩)、これを繰り返し、水でさらした試料を乾燥し測定したもの。
単に水でさらしてもあまり減らない。圧搾して、高濃度の漬け汁をどれだけ除去するか、が、線量低下に関係する。
単に、水でさらして塩抜きしても線量が下がらない。下がり方のばらつきは、圧搾時に残った水量が原因と考えている。

162 名無しに影響はない</b>(栃木県)<b>
2012/10/09(火) 19:19:39.58 ID:lo2++vdG

BGが暴れて、測定にならない日々が続いています。
8月の0.2-0.35uSv/h、9月の0.15-0.20uSv/h程度の新規供給に加えて
粉塵の蓄積があちらこちらに見られます。
気がついた点を少々。
測定場所、栃木県南部のどこか。一説によると、栃木・小山・真岡地区。
測定日時、2012.10.06-08
測定器、インスペクター+。30秒読み捨てて、その後の30秒間の最大値と最小値。

特記無しは、おおむね、測定点上空30-50cm。
洗濯機横。部屋の隅。0.17-0.19uSv/h。
土間入り口。0.15-0.19
土間のトタン屋根。0.13-0.15
同雨どい。 0.15-0.19(上空15cm前後)
土間入り口。0.08-0.10
土間上がり口(床直置き、上方向)。0.18-0.20
土間上がり口(横方向)。0.08-0.10
土間室内(水平方向)。0.08-0.10
屋根裏排気口。0.13-0.15

どうも、天井裏に溜まった粉塵が、夜間の気温低下で室内に流入し、
測定時の途中から線量が上昇し、BGが安定しない原因となっているようです。
泥埃が原因かと土間の測定を行ってみたのですが、全体的には低く、掃除が困難な場所が高線量になっている模様です。

163 名無しに影響はない</b>(栃木県)<b>
2012/10/09(火) 19:29:47.75 ID:lo2++vdG

BGが安定していないので、ちょっと信頼性が低いのですが
関西産食塩の線量が上昇している可能性があります。
8月以前は、BGに比べて有意差がある状態で、食塩の線量が低くなりました。
しかし、9月に購入した食塩は、瀬戸内産・長崎産を問わず、BGとの有意差が取れませんでした。
7月に関西地区で降下線量の上昇がみられました。降下した粉塵が海に落下し、関西地区の海洋汚染が進んでいる可能性があります。

つまり、瀬戸内産食塩を原料としているやさしおを標準物質として校正している場合に、
やさしおに含まれている瀬戸内産食塩の線量が上昇していると、負の誤差になります。
校正用線源の取り扱いに注意してください。

164 名無しに影響はない</b>(栃木県)<b>
2012/10/10(水) 19:52:26.78 ID:1N12Mmc7

162
土間入り口(屋外)。0.15-0.19
土間入り口(屋内)。0.08-0.10

165 名無しに影響はない</b>(栃木県)<b>
2012/10/30(火) 21:12:34.08 ID:8IdT5hak

雨に濡れた衣類の測定結果。
1. n=30 糊台
x <- c( 38,29,38,50,58,42,48,44,29,44,32,45,38,44,21,36,40,44,38,42,32,34,28,52,26,34,41,33,40,43)

2. n=30 2012.10.23 雨の中付近を徘徊した上着(未乾燥)
x <- c( 44,52,37,39,39,51,47,45,36,34,33,48,45,31,34,38,41,45,50,36,45,38,39,37,34,31,30,36,44,39)

3. n=30 糊台
x <- c( 34,48,43,41,40,51,40,38,24,44,45,50,55,31,46,35,46,30,34,32,41,39,43,49,45,26,36,34,38,34)

4. n=30 2012.10.23 雨の中付近を徘徊した上着(未乾燥)
x <- c( 49,41,44,39,44,61,44,54,45,42,51,46,43,43,34,35,33,42,36,40,40,47,34,55,44,33,33,49,56,38)

5. n=30 糊台
x <- c( 39,33,34,51,49,27,35,34,44,27,35,41,54,39,37,43,53,30,36,29,38,46,40,47,37,37,36,44,41,37)

6. n=30 2012.10.23 雨の中付近を徘徊した下着(未乾燥)
x <- c( 35,36,44,43,37,43,42,51,41,44,37,36,48,40,40,41,43,37,46,33,38,42,32,40,49,46,41,31,44,40)

7. n=30 糊台
x <- c( 47,42,42,39,40,45,29,48,31,42,42,37,43,31,33,38,36,34,44,29,37,39,40,31,27,40,39,44,36,37)

8. n=45 2012.10.23 雨の中付近を徘徊した下着(未乾燥)
x <- c( 42,49,40,41,48,47,45,44,44,48,40,51,43,57,52,39,43,41,46,41,43,30,46,47,34,50,52,39,56,40,63,47,42,58,55,35,49,38,50,55,51,37,34,49,33)

9. n=30 糊台
x <- c( 33,42,46,33,37,36,43,35,36,49,38,32,40,44,38,39,37,52,32,43,36,28,37,34,56,32,38,30,31,30)

BG
> mean(x) [1] 38.71333
> var(x) [1] 48.80989
雨の中付近を徘徊した上着(未乾燥)
> mean(x) [1] 41.55
> var(x) [1] 47.98051
雨の中付近を徘徊した下着(未乾燥)
> mean(x) [1] 43.38667
> var(x) [1] 45.53766

単位 CPM インスペクターですので、334で除すると uSv/h になります。
栃木県南部、一説によると、佐野・小山・真岡地区。
2012.10.23 日に小雨の中を徘徊して帰った服(ほぼ乾いていた)をポリ袋に入れて保存。測定。
上着は水が抜ける性質のある布地(濡れたまま吊るしておくと、いくら手で絞っても水滴が下に落下する)
下着は水を保つ性質のある布地。どちらも綿100%。中国製。

166 名無しに影響はない</b>(家)<b>
2012/11/09(金) 11:06:07.91 ID:v+MX7Ffr

中曽根が自分の『天地有情』の中にも『回顧録』の中にも書いてます、俺はCIAのテストを受けた、
英語もあった、論文も書いた、パスした、自分から進んでCIAのテストを受けたちゅーことですね。
それで彼はアメリカに派遣されます、で中曽根は自分で自慢げに書いてますけど、
色んな原子力発電所の法律は俺がみんな作ったってね、野党改進党です、自民党、自由党時代で、
その野党の若造が作れるはずがない、そこの背後にCIAがみんな絡んでます。
そうして日本に原子力発電所ができるんです、東電とか関西電力に作れています。
だけどまったくやってないことなのにやれというわけですから、無理があったわけですね。
無理がありました、だから今日、福島が事故があるのはそこなんですよ。

でブラックボックスといって触ってはいけない、中を見せないような状態なのに原発が日本に来ます。
だから今の福島のある原発はGEが開発して間もなくて危険極まりないのに、
彼らは無条件に入れて信じきったわけです、だから無条件に入れてそしてその数年後に、
欠陥商品であるということがわかるわけです、設計者が言うわけですよ、あれは間違ってたって。
だけどアメリカは、その「マーク1」ていうんですけど最初のやつが、まだいっぱいあります。
その設計をし直したり、色んな部品をつけ直したりして、ずうっとやってきてるわけですよ。
日本はまったくやらないまま四十年間、欠陥商品をそのまま使い続けてきたわけです。
日本は四十年間経ってるのに、「危ない」とGEも原発を作ったジェネラルエレクトリックも、
報告書を東電に差し上げたのに日本は改善一つしない。
http://www.youtube.com/watch?v=TuVjmXdufS4

でみんなが安全だと思わせるために凄い金を使ったわけですよ。
その金が全部電気代になってる、ということをみなさんは知らないといけないんです。
日本の電気料金は世界の電気料金の三倍なんです、三倍ですよ、でまだこれから上がります。
彼らはみんな太ったわけです、だから自民党の政治家も民主党の政治家も、
ほとんど反対しないじゃないですか、今でさえ反対の声上げないじゃないですか。
ここまで福島の人が苦しんでいるのに何をやってるんだと。
http://www.youtube.com/watch?v=3glGABd52fk

167 名無しに影響はない</b>(栃木県)<b>
2012/11/10(土) 10:29:55.69 ID:it1ocQqW

「2012.10.05 使用靴下(足が腫れた)」の分析

1. n=60 糊台
x <- c( 40,39,28,38,43,40,31,45,36,31,31,26,36,38,29,32,44,31,37,35,33,37,47,34,47,20,36,42,43,48,39,47,32,38,37,44,47,43,30,29,42,27,39,38,47,39,46,33,37,39,44,51,41,27,36,42,29,43,46,45)

2. n=30 2012.10.05 使用靴下(足が腫れた)
x <- c( 45,38,38,33,43,36,39,43,35,47,33,40,43,43,40,43,42,46,42,35,39,46,38,44,36,56,48,39,38,36)

3. n=30 糊台
x <- c( 24,30,31,31,37,31,29,27,47,40,36,32,29,40,39,33,35,46,35,46,33,37,52,36,40,40,38,35,42,35)

4. n=30 2012.10.05 使用靴下(足が腫れた)
x <- c( 45,39,45,36,42,37,57,47,21,38,38,38,37,34,39,39,64,47,34,44,39,37,44,39,50,43,25,47,39,36)

5. n=30 糊台
x <- c( 34,39,38,33,40,46,42,27,33,35,39,35,43,43,45,34,29,44,42,41,35,33,27,31,37,36,33,37,41,46)

床に蓄積しているようなので、床の処理を優先してやっています。

168 名無しに影響はない</b>(栃木県)<b>
2012/11/10(土) 10:31:06.20 ID:it1ocQqW

BGと試料の比較

1. n = 120 BG 繰り返し数 =3
gr1 <- c( 40,39,28,38,43,40,31,45,36,31,31,26,36,38,29,32,44,31,37,35,33,37,47,34,47,20,36,42,43,48,
39,47,32,38,37,44,47,43,30,29,42,27,39,38,47,39,46,33,37,39,44,51,41,27,36,42,29,43,46,45 ,
24,30,31,31,37,31,29,27,47,40,36,32,29,40,39,33,35,46,35,46,33,37,52,36,40,40,38,35,42,35 ,
34,39,38,33,40,46,42,27,33,35,39,35,43,43,45,34,29,44,42,41,35,33,27,31,37,36,33,37,41,46)

2. n = 60 2012.10.05 使用靴下(足が腫れた) 繰り返し数 =2
gr2 <- c( 45,38,38,33,43,36,39,43,35,47,33,40,43,43,40,43,42,46,42,35,39,46,38,44,36,56,48,39,38,36 ,
45,39,45,36,42,37,57,47,21,38,38,38,37,34,39,39,64,47,34,44,39,37,44,39,50,43,25,47,39,36)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -3.3565, 自由度 = 178, P値 = 0.0009652
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -5.425442 -1.407891
標本推定値:
平均値x 平均値y
37.31667 40.73333

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -3.2851, 自由度 = 111.598, P値 = 0.001363
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -5.477495 -1.355838
標本推定値:
平均値x 平均値y
37.31667 40.73333

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8795, 第1自由度 = 119, 第2自由度 = 59, P値 = 0.5499
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5542763 1.3492261
標本推定値:
分散比
0.8794716

>

169 名無しに影響はない</b>(栃木県)<b>
2012/11/10(土) 10:46:18.31 ID:it1ocQqW

床に1-2時間寝ると、喉が痛くなる。ところが、椅子で寝るとおこらない。
気道程度、濡れ壁式集塵機で、線量が落ちるのではないか、ということではじめたのが以下の測定。
生データは余りにも大量すぎるので、掲載不可。大体半日ぐらいの連続測定(記録ソフトが15時間程度で異常停止するため)。

作成した集塵機は、
発泡スチロール製箱(25*15*10程度)で、15cm側を上側約5cmを切断。残る3面にタオルをぶら下げ、蓋をした。
蓋に、直径10cm程度の穴をあけ、卓上扇風機を下から上に風が動くように置く。
これを床面におき、通常の試料測定用机の線量変化を測定した。

扇風機動作前
> mean(x)
[1] 39.34407
> var(x)
[1] 44.45018
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 6 1.0169492 1.016949
25 23 3.8983051 4.915254
30 103 17.4576271 22.372881
35 202 34.2372881 56.610169
40 130 22.0338983 78.644068
45 83 14.0677966 92.711864
50 31 5.2542373 97.966102
55 9 1.5254237 99.491525
60 2 0.3389831 99.830508
65 0 0.0000000 99.830508
70 1 0.1694915 100.000000

扇風機動作後。
> mean(x)
[1] 36.46329
> var(x)
[1] 36.78771
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 27 2.27848101 2.278481
25 114 9.62025316 11.898734
30 317 26.75105485 38.649789
35 372 31.39240506 70.042194
40 248 20.92827004 90.970464
45 83 7.00421941 97.974684
50 18 1.51898734 99.493671
55 5 0.42194093 99.915612
60 1 0.08438819 100.000000

170 名無しに影響はない</b>(栃木県)<b>
2012/11/10(土) 10:47:58.80 ID:it1ocQqW

> mean(x)
[1] 36.352
> var(x)
[1] 35.81995
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
15 1 0.08 0.08
20 24 1.92 2.00
25 137 10.96 12.96
30 315 25.20 38.16
35 391 31.28 69.44
40 264 21.12 90.56
45 98 7.84 98.40
50 18 1.44 99.84
55 2 0.16 100.00

> mean(x)
[1] 37.09242
> var(x)
[1] 40.52478
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 11 2.0332717 2.033272
25 47 8.6876155 10.720887
30 140 25.8780037 36.598891
35 147 27.1719039 63.770795
40 132 24.3992606 88.170055
45 50 9.2421442 97.412200
50 10 1.8484288 99.260628
55 4 0.7393715 100.000000

> mean(x)
[1] 36.63696
> var(x)
[1] 35.487
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 13 1.430143 1.430143
25 87 9.570957 11.001100
30 223 24.532453 35.533553
35 303 33.333333 68.866887
40 201 22.112211 90.979098
45 64 7.040704 98.019802
50 17 1.870187 99.889989
55 0 0.000000 99.889989
60 1 0.110011 100.000000
> mean(x)
[1] 37.05952
> var(x)
[1] 39.63607
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 6 1.4285714 1.428571
25 40 9.5238095 10.952381
30 107 25.4761905 36.428571
35 122 29.0476190 65.476190
40 89 21.1904762 86.666667
45 43 10.2380952 96.904762
50 12 2.8571429 99.761905
55 1 0.2380952 100.000000

171 名無しに影響はない</b>(栃木県)<b>
2012/11/10(土) 10:53:33.80 ID:it1ocQqW

床に寝たときに、多少喉が楽になったが、放射能の影響か、湿度が上がったためか、は不明。
湿度計の目盛りは、5%(1目盛り)しか動かないので、測定誤差の範囲内。
大体1日で、300-500ccの水が蒸発する。
しばらく使用して、中に入れたタオルの線量を測定すればはっきりするかもしれない。
発泡スチロールの上からの測定では、BGと共に同じ uSv/h値の範囲(30秒読み捨て、その後1分間の最大値と最小値を比較)。

172 名無しに影響はない</b>(栃木県)<b>
2012/12/26(水) 20:47:55.32 ID:T3SURqJr

分量が多いので、一部省略します
1. n=88 糊台
x <- c( 31,45,45,35,48,29,36,39,47,35,36,32,39,45,45,27,34,32,35,37,33,30,43,37,39,36,35,41,35,38,40,50,37,34,40,30,40,40,46,43,36,35,32,
43,32,32,45,35,37,33,59,38,33,45,36,42,34,38,26,41,18,42,34,35,38,37,32,33,36,27,25,38,45,41,35,40,38,29,38,41,28,45,38,24,36,40,48,60)

2. n=30 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル
x <- c( 39,33,44,34,38,41,37,38,34,29,42,37,49,46,37,36,32,48,45,40,51,29,36,34,33,44,43,34,42,41)

3. n=45 糊台
x <- c( 30,37,34,32,53,37,38,34,35,32,55,34,34,34,39,39,34,27,47,30,31,41,35,37,42,46,35,40,34,40,46,27,40,39,28,40,41,36,49,37,35,41,40,28,34)

4. n=30 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル
x <- c( 25,39,43,51,41,45,34,39,35,35,41,33,54,48,39,46,29,51,33,37,44,39,30,42,43,30,36,36,30,48)

5. n=30 糊台
x <- c( 39,40,31,38,40,37,42,37,46,46,38,33,29,41,33,31,37,41,32,35,41,52,34,36,40,32,30,32,46,36)

6. n=30 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル
x <- c( 29,39,30,34,43,42,35,32,47,36,49,40,35,34,43,45,41,36,35,36,39,30,42,35,39,37,34,38,33,35)

7. n=30 糊台
x <- c( 45,31,39,39,22,47,40,28,43,25,32,33,40,29,49,35,47,28,43,32,33,38,34,29,38,31,37,25,46,31)

8. n=30 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル
x <- c( 37,41,41,43,38,40,41,35,48,50,39,44,48,38,46,34,38,44,48,43,40,41,36,30,35,45,34,38,36,32)

9. n=30 糊台
x <- c( 47,46,38,37,37,38,43,29,40,34,29,25,40,40,40,31,37,44,33,37,49,34,44,40,41,41,48,33,25,32)

173 名無しに影響はない</b>(栃木県)<b>
2012/12/26(水) 20:49:12.81 ID:T3SURqJr

全体の分析
> mean(x)
[1] 37.793
> var(x)
[1] 40.14709
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.3354, 第1自由度 = 8, 第2自由度 = 334, P値 = 0.2248

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 10.1848, 自由度 = 8, P値 = 0.2523

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.4059, 第1自由度 = 8.000, 第2自由度 = 119.984, P値 = 0.2008

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
15 1 0.2915452 0.2915452
20 2 0.5830904 0.8746356
25 27 7.8717201 8.7463557
30 77 22.4489796 31.1953353
35 106 30.9037901 62.0991254
40 75 21.8658892 83.9650146
45 44 12.8279883 96.7930029
50 8 2.3323615 99.1253644
55 2 0.5830904 99.7084548
60 1 0.2915452 100.0000000
>
BGと試料の比較
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 5.7115, 第1自由度 = 1, 第2自由度 = 341, P値 = 0.01740

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.8656, 自由度 = 1, P値 = 0.1720

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 6.1058, 第1自由度 = 1.000, 第2自由度 = 267.874, P値 = 0.01410

>

174 名無しに影響はない</b>(栃木県)<b>
2012/12/26(水) 20:50:49.35 ID:T3SURqJr

繰り返しによる影響

1. n = 223 BG 繰り返し数 =5
> mean(x)
[1] 37.19731
> var(x)
[1] 42.5645
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.5177, 第1自由度 = 4, 第2自由度 = 218, P値 = 0.7228

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.7326, 自由度 = 4, P値 = 0.6035

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.4303, 第1自由度 = 4.000, 第2自由度 = 84.391, P値 = 0.7864

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
15 1 0.4484305 0.4484305
20 2 0.8968610 1.3452915
25 22 9.8654709 11.2107623
30 53 23.7668161 34.9775785
35 66 29.5964126 64.5739910
40 45 20.1793722 84.7533632
45 28 12.5560538 97.3094170
50 3 1.3452915 98.6547085
55 2 0.8968610 99.5515695
60 1 0.4484305 100.0000000
>

175 名無しに影響はない</b>(栃木県)<b>
2012/12/26(水) 20:51:38.81 ID:T3SURqJr

2. n = 120 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル 繰り返し数 =4
> mean(x)
[1] 38.9
> var(x)
[1] 34.07395
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.0829, 第1自由度 = 3, 第2自由度 = 116, P値 = 0.3592

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 5.4507, 自由度 = 3, P値 = 0.1416

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.4109, 第1自由度 = 3.00, 第2自由度 = 63.95, P値 = 0.2477

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 5 4.166667 4.166667
30 24 20.000000 24.166667
35 40 33.333333 57.500000
40 30 25.000000 82.500000
45 16 13.333333 95.833333
50 5 4.166667 100.000000
>

176 名無しに影響はない</b>(栃木県)<b>
2012/12/26(水) 20:53:03.01 ID:T3SURqJr

BGと試料の比較

1. n = 223 BG 繰り返し数 =5
2. n = 120 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル 繰り返し数 =4
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -2.3899, 自由度 = 341, P値 = 0.01740
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.1040585 -0.3013226
標本推定値:
平均値x 平均値y
37.19731 38.90000

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -2.471, 自由度 = 267.874, P値 = 0.01410
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.0593787 -0.3460025
標本推定値:
平均値x 平均値y
37.19731 38.90000

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.2492, 第1自由度 = 222, 第2自由度 = 119, P値 = 0.1771
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.9036585 1.7006307
標本推定値:
分散比
1.24918

>

177 名無しに影響はない</b>(栃木県)<b>
2012/12/26(水) 20:56:38.52 ID:T3SURqJr

これみればわかるとおり、少し線量が増えたのがタオル。
多少粉塵が減るみたい、という結果。
BGの度数分布の形を見ればわかるとおり、
高原状態から脱して、わずかに違う複数の線量差がある大気が、入れ替わりながら移動するという現象は、抑えられた気分。

178 名無しに影響はない</b>(埼玉県)<b>
2013/02/05(火) 23:09:40.08 ID:19MLNuvZ

インスペクターたすの相場はいくらくらい?

179 名無しに影響はない</b>(栃木県)<b>
2013/02/07(木) 20:36:46.26 ID:cEt+X41Z

糊台の最近の数値。
暖房入れて換気が悪くなったせいか、bgが暴れて安定していない。
それで、測定ができないでいる。
bgの乱れを参考程度に。
37,34,39,41,38,32,39,39,34,41,46,47,30,38,38,44,46,38,37,30,37,49,48,38,44,48,47,32,41,32,29,39,41,30,39,36,
26,32,33,43,31,34,40,45,31,38,36,44,47,43,47,36,39,39,31,40,35,38,41,28,36,39,32,47,35,36,38,37,25,31,48,34,
39,35,31,40,36,36,37,30,43,34,41,38,32,37,44,40,46,28,31,36,38,34,48,46,39,40,32,43,37,34,40,39,41,31,45,37,
34,44,38,37,34,51,37,33,47,44,38,30,34,38,31,30,40,42,39,26,36,41,41,39,45,37,38,42,30,38,32,57,35,26,35,26,
38,32,37,36,44,41,40,37,33,34,46,44,37,38,31,41,40,42,49,29,30,31,25,37,47,40,40,22,33,38,32,32,43,47,62,26,
42,35,38,40,33,35,37,49,47,43,39,41,36,32,40,40,38,32,36,40,34,44,34,25,34,48,51,29,33,32,39,28,38,46,43,36,
41,38,33,30,37,38,34,35,39,49,35,32,40,42,35,31,40,44,34,32,48,45,35,36,47,33,47,44,35,43,30,44,41,44,33,37,
33,29,30,30,39,31,47,41,40,42,36,36,42,25,31,38,39,35,41,38,34,25,41,43,36,40,30,46,33,42,24,33,33,37,39,37,
39,36,28,28,36,30,45,50,24,23,46,40,23,33,38,36,29,26,42,49,44,23,35,32,31,38,40,30,44,41,42,51,32,33,43,31,
29,25,50,35,33,39,41,39,34,38,40,29,43,35,29,40,29,38,48,51,35,24,39,34,40,26,41,35,34,33,49,42,38,39,40,39,
35,34,43,33,34,40,38,37,28,46,32,39,32,27,44,42,27,42,34,41,31,39,36,32,44,36,30,34,36,38,44,35,45,41,45,32,
36,41,46,38,31,52,27,35,45,53,34,34,37,37,35,29,52,38,34,40,44,43,34,45,37,53,38,33,49,36,20,29,36,28,37,46,
32,39,38,44,34,42,32,35,40,44,37,35,37,50,28,38,33,31,28,32,46,29,33,35,50,39,37,33,28,45,48,30,34,30,34,31,
32,38,38,32,42,44,39,37,36,32,41,33,31,47,33,25,37,37,38,35,24,36,28,41,43,36,37,33,41,35,52,40,34,35,38,35,
53,40,47,37,42,31,48,42,33,30,37,36,32,43,34,38,34,28,26,32,44,38,44,39,37,48,38,34,45,35,27,37,40,30,36,41,
41,29,26,32,41,37,30,37,31,38,45,34,31,36,39,25,40,40,38,37,32,50,35,30,42,42,44,38,42,25,40,39,43,34,30,36,
41,33,42,46,41,35,34,33,32,27,30,36,49,29,38,22,40,36,44,38,28,37,33,33,32,35,33,35,35,46,30,27,37,47,36,37,
40,39,47,40,41,35,27,31,43,47,30,38,42,32,40,32,32,34,44,46,40,41,43,43,43,30,35,39,43,46,31,31,39,46,42,43,
42,47,42,43,35,29,25,32,45,39,47,39,34,37,38,37,31,44,42,37,39,45,39,37,41,38,37,42,38,33,38,46,28,34,43,33,
40,38,40,35,31,36,29,30,34,46,42,38,36,27,37,38,47,44,43,26,29,39,32,36,38,34,42,35,43,25,41,32,34,29,33,38,
34,39,42,35,46,44,35,30,37,37,34,32,31,29,46,29,36,30,28,27,29,55,27,39,41,39,49,33,46,37,36,34,37,45,30,34,
40,31,32,31,38,22,34,38,50,43,27,45,37,43,39,43,31,39,32,32,40,32,31,38,36,40,41,39,39,44,36,41,45,56,45,31,
39,38,44,27,45,50,33,48,43,41,44,26,40,38,34,43,48,39,39,36,48,36,27,24,32,36,37,34,38,40,41,40,38,41,33,28,
49,33,42,38,50,35,37,27,39,32,36,46,30,41,52,44,49,45,33,30,27,30,39,37,41,45,34,34,36,34,30,38,37,36,40,49,
40,36,36,34,39,39,48,43,37,30,37,54,41,35,52,49,30,35,31,40,35,41,35,35,36,33,45,39,33,47,31,40,38,28,41,36,
33,41,33,37,45,39,43,35,36,41,38,31,45,32,36,29,45,30,47,35,48,34,34,34,38,42,39,28,30,29,41,37,33,44,47,34,
37,35,36,36,39,38,30,35,43,42,32,41,25,46,44,28,38,37,36,43,40,37,47,40,37,40,30,43,42,33,30,40,39,32,37,41,
29,28,31,36,43,28,34,35,40,37,36,40,41,29,53,39,42,37,35,27,33,43,39,46,35,39,37,35,36,33,46,45,42,30,40,46,
38,35,35,30,38,37,36,39,43,39,51,27,40,35,30,44,31,43,31,27,33,37,39,43,36,44,34,43,38,39,31,33,36,30,30,36,
35,38,34,30,48,39,43,39,38,27,37,40,37,40,47,39,35,33,38,43,40,33,36,26,39,42,43,44,47,37,41,37,40,36,37,37,
32,37,45,39,41,39,35,39,37,48,32,29,47,32,30,31,32,40,37,42,40,34,37,32,29,38,40,44,43,40,41,45,42,39,41,27,
40,45,36,41,41,52,41,41,44,45,45,49,31,36,33,40,41,32,44,38,47,43,38,34,33,42,39,36,36,46,51,43,50,35,45,37,
41,38,32,37,38,37,28,36,34,40,27,50,43,37,46,25,25,50,40,34,43,38,41,43,48,34,35,50,35,38,27,43,46,40,31,32,
37,36,41,43,44,36,30,39,33,31,31,42,48,37,45,39,32

180 名無しに影響はない</b>(栃木県)<b>
2013/02/07(木) 20:39:41.33 ID:cEt+X41Z

178
インスペクタースレで聞いてくれ。
http://uni.2ch.net/test/read.cgi/radiation/1331598144/l50
こっちなら、並行輸入店・日本正規代理店と取引のある人がいるから。

181 名無しに影響はない</b>(やわらか銀行)<b>
2013/02/15(金) 03:28:38.93 ID:PrB5lg54

>163
栃木さんまだ測ってたんですねw
関西や瀬戸内海の食塩が汚染しているとのことですが、海は繋がっているんだから時間がたつにつれて、汚染するのは当然だと思います。
シュミレーションでは原発事故から300日後には日本周辺の太平洋側の海がすべて汚染。500日後には日本海側もすべて汚染。1000日後にはアメリカ西海岸全域の海が汚染。
まだ福島原発からは放射性物質が毎日でていますから今後さらにひどくなるでしょう。

参考
http://blog.goo.ne.jp/flyhigh_2012/e/99f9d328ef7dda22c196ee043404caed

182 名無しに影響はない</b>(鹿児島県)<b>
2013/07/21(日) NY:AN:NY.AN ID:UoCFcdWn

自分の生命健康,未来を守りたいのなら選挙に行こう!


高濃度放射性物質拡散反対!

原発再稼動反対!

基本的人権まで無くそうと憲法改正を強行しようとしている売国奴政権は要らない!

徴兵制度及び国防軍化反対!

福島第一原発事故以来今も尚,毎時1000万ベクレル以上の
高濃度放射性物質を事故以来拡散し続けており,
事故の収束すら全くお手上げ状態にもかかわらず
原発再稼動を強行する諸悪の根源の売国奴政権の存続断固反対!

自民・公明・維新の会・みんなの党・民主は
日本国国民及び日本国自体を壊滅させる!

183 名無しに影響はない</b>(滋賀県)<b>
2014/02/17(月) 13:41:37.48 ID:y7oMWMbj

ほう

184 名無しに影響はない</b>(catv?)<b>
2014/02/17(月) 17:39:20.24 ID:6y3AAxxS

とちぎーーーーーーwww数字の羅列がちこみしろーーwwwwww
グンマーと抗争中で忙しいんか?wwww

185 名無しに影響はない</b>(長屋)<b>
2014/06/22(日) 06:55:42.58 ID:MS2Cm1RS

(栃木県)が、見放されて淋しいのか久しぶりに降臨www

186 名無しに影響はない</b>(やわらか銀行)<b>
2014/07/02(水) 15:12:38.14 ID:cnHSybXF

がんばれ!(栃木県)!

187 名無しに影響はない</b>(家)<b>
2014/09/12(金) 09:52:00.72 ID:fAjDnWHk

都議 樺山卓司(自殺扱いで変死)

6/30までブログで放射線量測定結果を発表

188 名無しに影響はない</b>(大阪府)<b>
2016/01/18(月) 14:36:16.19 ID:DQWLzISE

最近のデータはあるのかな?

189 名無しに影響はない
2017/12/27(水) 18:06:13.75 ID:YbmmgWVU

家で不労所得的に稼げる方法など
参考までに、
⇒ 『武藤のムロイエウレ』 というHPで見ることができるらしいです。

グーグル検索⇒『武藤のムロイエウレ』"

QAMUG1GZYE

190 名無しに影響はない
2018/05/21(月) 13:58:47.65 ID:CXUbEV+Y

中学生でもできる副業情報ドットコム
参考までに書いておきます
グーグルで検索するといいかも『ネットで稼ぐ方法 モニアレフヌノ』

STFQM

191 名無しに影響はない
2018/07/04(水) 00:57:52.49 ID:UbhyHaIk

8MM

192 名無しに影響はない
2019/06/08(土) 15:24:04.36 ID:dEt8TrNB

新しいデータはまだ?

193 名無しに影響はない
2020/10/11(日) 17:30:41.47 ID:dbkp5b+r

パソコンの調子が悪く、線量を記録できないでいる。
それで、現時点で、できる測定方法を

手で触りつづけて、5分か10分まつ。
痛くなってくるならば、高線量と見当つく。

近所産のカボチャ、2分ぐらいが限界であった。
同ピーマン、種の所が3分ぐらい、皮の所は10分以上平気だった。

1 2 最新 全部 

2ch勢い総合ランキング

【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★65 [首都圏の虎★] (1001)
勢い 20419.89 14.18レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★63 [首都圏の虎★] (1001)
勢い 20245.90 14.06レス/分 ニュース > ニュース速報+
【日本一決定戦】愛知県民ちょっとこいkskすっぞ【俺コロナ】 (332)
勢い 20214.80 14.04レス/分 雑談系2 > ニュー速VIP
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★61 [首都圏の虎★] (1001)
勢い 19188.60 13.33レス/分 ニュース > ニュース速報+
【菅首相】GoToトラベル感染原因に否定的…「4000万人が利用して感染者数は180人だ」★3 [首都圏の虎★] (1001)
勢い 18760.61 13.03レス/分 ニュース > ニュース速報+
【菅首相】GoToトラベル感染原因に否定的…「4000万人が利用して感染者数は180人だ」★5 [首都圏の虎★] (1003)
勢い 17958.84 12.47レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★62 [首都圏の虎★] (1001)
勢い 17658.10 12.26レス/分 ニュース > ニュース速報+
【東京地検特捜部】安倍晋三前首相への事情聴取も検討…「桜を見る会」前夜祭会費差額補填巡り ★4 [potato★] (1001)
勢い 16791.08 11.66レス/分 ニュース > ニュース速報+
【大阪府知事】吉村知事 12月5日まで「不要不急の外出控えて」 22日に大阪で490人感染 [孤高の旅人★] (1001)
勢い 16790.42 11.66レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★68 [BFU★] (1001)
勢い 16489.29 11.45レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★67 [首都圏の虎★] (1001)
勢い 15921.06 11.06レス/分 ニュース > ニュース速報+
【ラノベ】大人が知らない間に「若者のライトノベル離れ」が起きていた…!★3 [記憶たどり。★] (1001)
勢い 15707.46 10.91レス/分 ニュース > ニュース速報+
【日本一決定戦】埼玉県民ちょっと来いkskすっぞ【翔んで埼玉】 (243)
勢い 15668.06 10.88レス/分 雑談系2 > ニュー速VIP
【速報】23日 東京の新規感染者 314人 [BFU★] (1001)
勢い 15419.22 10.71レス/分 ニュース > ニュース速報+
【速報】大阪府、新たに282人感染 11月23日 [ばーど★] (1001)
勢い 15395.10 10.69レス/分 ニュース > ニュース速報+
【日本一決定戦】神奈川県民ちょっと来いkskすっぞ【ドルチェ&ガッパーナの香水のせいだよ】 (251)
勢い 15391.34 10.69レス/分 雑談系2 > ニュー速VIP
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★58 [ばーど★] (1001)
勢い 15293.79 10.62レス/分 ニュース > ニュース速報+
【東京/調布】「もうここには住めない」地下を日本最大のシールドマシン通過、自宅の真下に高さ4mの空洞が…外環道トンネル工事[11/23] [右大臣・大ちゃん之弼★] (1001)
勢い 14771.46 10.26レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★66 [首都圏の虎★] (1001)
勢い 14533.09 10.09レス/分 ニュース > ニュース速報+
【日本一決定戦】山梨県民ちょっと来いkskすっぞ【リニア・富士山】 (239)
勢い 14440.28 10.03レス/分 雑談系2 > ニュー速VIP
【難読地名】江東区東雲のタワーマンション周辺で22日夜より3,800軒以上が停電 “オール電化”の弱点 [人気者★] (1001)
勢い 14217.96 9.87レス/分 ニュース > ニュース速報+
【東京地検特捜部】安倍晋三前首相への事情聴取も検討…「桜を見る会」前夜祭会費差額補填巡り ★5 [potato★] (1001)
勢い 14144.38 9.82レス/分 ニュース > ニュース速報+
【社会】コロナの死者よりも多い自殺者数に海外メディアが驚愕。日本の「メンタルヘルス・パンデミック」 [首都圏の虎★] (1001)
勢い 14138.71 9.82レス/分 ニュース > ニュース速報+
【東京地検特捜部】安倍晋三前首相への事情聴取も検討…「桜を見る会」前夜祭会費差額補填巡り [potato★] (1001)
勢い 14097.21 9.79レス/分 ニュース > ニュース速報+
【菅首相】GoToトラベル感染原因に否定的…「4000万人が利用して感染者数は180人だ」★2 [ばーど★] (1001)
勢い 14044.56 9.75レス/分 ニュース > ニュース速報+
【ラノベ】大人が知らない間に「若者のライトノベル離れ」が起きていた…! [記憶たどり。★] (1001)
勢い 14000.75 9.72レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★69 [BFU★] (1001)
勢い 13433.79 9.33レス/分 ニュース > ニュース速報+
“GoTo見直し”は想定外か…官邸の雰囲気が急変 徹夜で「制度設計」★3 [ばーど★] (1001)
勢い 12802.51 8.89レス/分 ニュース > ニュース速報+
【週刊新潮】 1日のコロナによる死者数がいまの10倍に増えたとしても例年経験している事態・・・感染者数に神経質になる必要があるのか? [影のたけし軍団★] (732)
勢い 12687.02 8.81レス/分 ニュース > ニュース速報+
広告
【日本一決定戦】東京都民ちょっと来いkskすっぞ【クソコテは死ね】 (537)
勢い 12465.56 8.66レス/分 雑談系2 > ニュー速VIP
【東京地検特捜部】安倍晋三前首相への事情聴取も検討…「桜を見る会」前夜祭会費差額補填巡り ★7 [potato★] (1002)
勢い 12371.49 8.59レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★60 [首都圏の虎★] (1001)
勢い 12054.27 8.37レス/分 ニュース > ニュース速報+
【交通違反】「歩行者いるのに横断歩道で止まらない車」 全国最多の摘発は「愛知」 [鬼瓦権蔵★] (1001)
勢い 11974.53 8.32レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★75 [BFU★] (1001)
勢い 11657.59 8.10レス/分 ニュース > ニュース速報+
【菅首相】GoToトラベル感染原因に否定的…「4000万人が利用して感染者数は180人だ」★4 [首都圏の虎★] (1001)
勢い 11563.29 8.03レス/分 ニュース > ニュース速報+
実質上々45 (1001)
勢い 11511.13 7.99レス/分 ネット関係 > 難民
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★71 [さかい★] (1001)
勢い 11304.84 7.85レス/分 ニュース > ニュース速報+
【東京都】病床数が逼迫…ギリギリの調整 軽症“後回し”に ★2 [ばーど★] (1005)
勢い 11242.30 7.81レス/分 ニュース > ニュース速報+
【日本一決定戦】大阪府民ちょっと来いkskすっぞ【吉村寝ろ】 (186)
勢い 11198.89 7.78レス/分 雑談系2 > ニュー速VIP
肴30882 (1001)
勢い 11185.57 7.77レス/分 ネット関係 > 難民
【大阪】吉村知事、繁華街飲食店に午後9時までの時短要請へ…経営者ら頭抱え「忘年会シーズンなのに致命傷だ」 [ばーど★] (1006)
勢い 11182.61 7.77レス/分 ニュース > ニュース速報+
【日本一決定戦】石川県民ちょっと来いkskすっぞ【めざせベスト10】 (1001)
勢い 11170.67 7.76レス/分 雑談系2 > ニュー速VIP
【菅首相】GoToトラベル感染原因に否定的…「4000万人が利用して感染者数は180人だ」 [ばーど★] (1001)
勢い 11035.85 7.66レス/分 ニュース > ニュース速報+
【デジタル庁】海外から人材受け入れ  菅首相「世界で活躍できる方」(産経新聞) [少考さん★] (1001)
勢い 10922.36 7.58レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、集計機の不正めぐる陰謀論を展開したパウエル弁護士を弁護団から放逐 ★2 [ごまカンパチ★] (1001)
勢い 10817.38 7.51レス/分 ニュース > ニュース速報+

勢い 10814.64 7.51レス/分 ネット関係 > 難民
本当のフラゲ605枚 (1001)
勢い 10753.00 7.47レス/分 ネット関係 > 難民
【速報】23日 東京の新規感染者 315人 月曜日300人超は初 ★2 [BFU★] (1001)
勢い 10708.55 7.44レス/分 ニュース > ニュース速報+
【ラノベ】大人が知らない間に「若者のライトノベル離れ」が起きていた…!★2 [記憶たどり。★] (1001)
勢い 10635.98 7.39レス/分 ニュース > ニュース速報+
【GoTo】札幌、大阪停止へ 予約済み、割引適用せず(共同) [蚤の市★] (1001)
勢い 10356.01 7.19レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★73 [さかい★] (1001)
勢い 10303.83 7.16レス/分 ニュース > ニュース速報+
【菅首相】GoToトラベル感染原因に否定的…「4000万人が利用して感染者数は180人だ」★6 [首都圏の虎★] (1001)
勢い 10262.91 7.13レス/分 ニュース > ニュース速報+
【東京地検特捜部】安倍晋三前首相への事情聴取も検討…「桜を見る会」前夜祭会費差額補填巡り ★6 [potato★] (1001)
勢い 10112.18 7.02レス/分 ニュース > ニュース速報+
【菅首相】GoToトラベル感染原因に否定的…「4000万人が利用して感染者数は180人だ」★7 [首都圏の虎★] (1003)
勢い 9994.33 6.94レス/分 ニュース > ニュース速報+
「コメ余り」が深刻 外食需要低下にコロナ追い打ち、価格は下落 [HAIKI★] (1001)
勢い 9962.81 6.92レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★70 [さかい★] (1001)
勢い 9960.43 6.92レス/分 ニュース > ニュース速報+
リンク元のアドセンスクリックお願いします (1001)
勢い 9901.85 6.88レス/分 ネット関係 > 難民
【悲報】細野豪志「安倍晋三逮捕?そんなことやったら韓国と同レベルになるぞ」 [943862693] (1001)
勢い 9893.88 6.87レス/分 雑談系2 > ニュー速(嫌儲)
広告
国内のコロナ重症者331人、過去最多 [potato★] (1001)
勢い 9866.42 6.85レス/分 ニュース > ニュース速報+
【夢】年末ジャンボ宝くじ発売 1等・前後賞で10億円 [ばーど★] (618)
勢い 9687.08 6.73レス/分 ニュース > ニュース速報+
東京+314 [597533159] (1001)
勢い 9534.38 6.62レス/分 雑談系2 > ニュー速(嫌儲)
【神奈川】万引きで逮捕された男、取調室で青ざめた顔…搬送先の病院で死亡 [どどん★] (253)
勢い 9524.71 6.61レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★76 [BFU★] (222)
勢い 9481.36 6.58レス/分 ニュース > ニュース速報+
【GoTo】札幌、大阪停止へ 予約済み、割引適用せず(共同) ★2 [蚤の市★] (1001)
勢い 9182.56 6.38レス/分 ニュース > ニュース速報+
実質羊62 (1001)
勢い 9160.55 6.36レス/分 ネット関係 > 難民
アイドルマスターシンデレラガールズ愚痴スレ6431 (1001)
勢い 9098.36 6.32レス/分 雑談系2 > 最悪
【速報】安倍晋三 逮捕へ [825759969] (1001)
勢い 8897.78 6.18レス/分 雑談系2 > ニュー速(嫌儲)
【日本一決定戦】福島県民ちょっと来いkskすっぞ【朝ドラ エール】 (467)
勢い 8838.73 6.14レス/分 雑談系2 > ニュー速VIP
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★59 [ばーど★] (1001)
勢い 8653.54 6.01レス/分 ニュース > ニュース速報+
【デレステ】スターライトステージ★12779 (558)
勢い 8569.36 5.95レス/分 家電製品 > スマホアプリ
Jざつ4385 (1001)
勢い 8502.40 5.90レス/分 ネット関係 > 難民
フラゲのフラゲ603枚 (1001)
勢い 8473.12 5.88レス/分 ネット関係 > 難民
【動画】ファミリーマートオーナーが従業員のババアを思いっきりビンタwwwwwwwwwwwwwwww [243251451] (1001)
勢い 8349.54 5.80レス/分 雑談系2 > ニュー速(嫌儲)
【社会】コロナの死者よりも多い自殺者数に海外メディアが驚愕。日本の「メンタルヘルス・パンデミック」 ★2 [首都圏の虎★] (1001)
勢い 8315.35 5.77レス/分 ニュース > ニュース速報+
【東京都】病床数が逼迫…ギリギリの調整 軽症“後回し”に [ばーど★] (1001)
勢い 8280.83 5.75レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★64 [首都圏の虎★] (1001)
勢い 8232.57 5.72レス/分 ニュース > ニュース速報+
Jざつ4393 (1001)
勢い 8213.04 5.70レス/分 ネット関係 > 難民
【続報】江東区東雲のタワーマンション周辺で停電(本日13時頃復旧) 3連休台無し“オール電化”の弱点 [人気者★] (1001)
勢い 8104.11 5.63レス/分 ニュース > ニュース速報+
【デレステ】スターライトステージ★12777 (1001)
勢い 8050.49 5.59レス/分 家電製品 > スマホアプリ
肴30881 (1001)
勢い 8038.94 5.58レス/分 ネット関係 > 難民
【菅首相】GoToトラベル感染原因に否定的…「4000万人が利用して感染者数は180人だ」★8 [首都圏の虎★] (1001)
勢い 8006.04 5.56レス/分 ニュース > ニュース速報+
【号外】安倍晋三、ガチで聴取へ [455169849] (1001)
勢い 7933.80 5.51レス/分 雑談系2 > ニュー速(嫌儲)
「コメ余り」が深刻 外食需要低下にコロナ追い打ち、価格は下落 ★2 [HAIKI★] (1002)
勢い 7924.38 5.50レス/分 ニュース > ニュース速報+
【mobage】アイドルマスターシンデレラガールズ28170人目 (1001)
勢い 7862.60 5.46レス/分 家電製品 > 携帯電話ゲー

勢い 7843.93 5.45レス/分 ネット関係 > 難民
アイドルマスターシンデレラガールズ愚痴スレ6430 (1001)
勢い 7819.04 5.43レス/分 雑談系2 > 最悪
【ハンギョレ新聞】 ギクシャクし続ける韓日関係…脱出口が見えない  冷え切った関係はこのまま冬を迎える見込み★3 [11/23] [荒波φ★] (1001)
勢い 7778.25 5.40レス/分 世界情勢 > 東アジアnews+
広告
【破魔婆出i禁】lD菜し牛飯3O3誤【吟婆出i禁】 (1001)
勢い 7653.66 5.32レス/分 ネット関係 > 難民
【日本一決定戦】沖縄県民ちょっと来いkskすっぞ【首里城再建チバリヨー】 (598)
勢い 7646.47 5.31レス/分 雑談系2 > ニュー速VIP
アナルアフィブログクリックよろしく (1001)
勢い 7615.33 5.29レス/分 ネット関係 > 難民
【東京地検特捜部】安倍前首相の秘書ら、東京地検が任意聴取…「桜を見る会」前夜祭の会費補填巡り★3 [孤高の旅人★] (1001)
勢い 7583.92 5.27レス/分 ニュース > ニュース速報+

勢い 7493.84 5.20レス/分 ネット関係 > 難民
【ミリシタ】アイドルマスターミリオンライブ! シアターデイズ Part3483 (1001)
勢い 7457.08 5.18レス/分 家電製品 > スマホアプリ
【渋谷殴打】所持金8円。メモに親類の連絡先びっしり…捜査員に知らされた姉の犠牲「まさか路上で生活していたとは。理不尽」★5 [首都圏の虎★] (1001)
勢い 7450.36 5.17レス/分 ニュース > ニュース速報+
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★74 [さかい★] (1001)
勢い 7373.73 5.12レス/分 ニュース > ニュース速報+
Jざつ4391 (1001)
勢い 7371.21 5.12レス/分 ネット関係 > 難民
303六id菜し飯 (1001)
勢い 7213.98 5.01レス/分 ネット関係 > 難民
【デレステ】スターライトステージ★12778 (1001)
勢い 7201.20 5.00レス/分 家電製品 > スマホアプリ
Jざつ4390 (1001)
勢い 7200.00 5.00レス/分 ネット関係 > 難民
【ハンギョレ新聞】 ギクシャクし続ける韓日関係…脱出口が見えない  冷え切った関係はこのまま冬を迎える見込み★4 [11/23] [新種のホケモン★] (1001)
勢い 7012.03 4.87レス/分 世界情勢 > 東アジアnews+
【名無し奥も○○奥も】気楽に井戸端会議11667【みんな来い】 (1001)
勢い 6985.41 4.85レス/分 カテゴリ雑談 > 既婚女性
【政府】「皇女」制度の創設検討 結婚で皇籍離脱後も公務 [ばーど★] (1001)
勢い 6981.45 4.85レス/分 ニュース > ニュース速報+

勢い 6980.27 4.85レス/分 ネット関係 > 難民
【ミリシタ】アイドルマスターミリオンライブ! シアターデイズ Part3484 (1001)
勢い 6833.63 4.75レス/分 家電製品 > スマホアプリ
【日本一決定戦】岐阜県民ちょっと来いkskすっぞ【麒麟がくるとかLiSAの出身地とか】 (555)
勢い 6705.64 4.66レス/分 雑談系2 > ニュー速VIP
【ハンギョレ新聞】 ギクシャクし続ける韓日関係…脱出口が見えない  冷え切った関係はこのまま冬を迎える見込み★4 [11/23] [新種のホケモン★] (1001)
勢い 6681.58 4.64レス/分 世界情勢 > 東アジアnews+
肴30880 (1001)
勢い 6677.46 4.64レス/分 ネット関係 > 難民
■■速報@ゲーハー板 ver.55190■■ (178)
勢い 6675.00 4.64レス/分 ゲーム > ハード・業界
実質16489 (1001)
勢い 6656.37 4.62レス/分 ネット関係 > 難民
リンク元大麻ブログの広告を1192回クリック (1001)
勢い 6647.64 4.62レス/分 ネット関係 > 難民
【日本一決定戦】北海道民ちょっと来いkskすっぞ【昨年王者は今年も王者】 (340)
勢い 6610.26 4.59レス/分 雑談系2 > ニュー速VIP
【名無し奥も○○奥も】気楽に井戸端会議11674【みんな来い】 (1001)
勢い 6566.40 4.56レス/分 カテゴリ雑談 > 既婚女性
■■速報@ゲーハー板 ver.55189■■ (1001)
勢い 6465.79 4.49レス/分 ゲーム > ハード・業界
亜美の雑談237 (613)
勢い 6446.35 4.48レス/分 雑談系2 > なんでもあり
【米大統領選】トランプ陣営、ミシガンで訴訟取り下げ ペンシルベニアでは戦術変更 ★72 [さかい★] (1001)
勢い 6410.89 4.45レス/分 ニュース > ニュース速報+
リンク元大麻ブログの広告を710回クリック (1001)
勢い 6404.03 4.45レス/分 ネット関係 > 難民
広告
【東京地検特捜部】安倍前首相の秘書ら、東京地検が任意聴取…「桜を見る会」前夜祭の会費補填巡り★4 [孤高の旅人★] (1001)
勢い 6402.62 4.45レス/分 ニュース > ニュース速報+
■■速報@ゲーハー板 ver.55188■■ (1001)
勢い 6318.03 4.39レス/分 ゲーム > ハード・業界
アイドルマスターシンデレラガールズ愚痴スレ6436 (536)
勢い 6262.39 4.35レス/分 雑談系2 > 最悪
実質上々43 (1001)
勢い 6251.73 4.34レス/分 ネット関係 > 難民
【名無し奥も○○奥も】気楽に井戸端会議11671【みんな来い】さ (1001)
勢い 6222.98 4.32レス/分 カテゴリ雑談 > 既婚女性
実質16488 (1001)
勢い 6076.96 4.22レス/分 ネット関係 > 難民
(波間i婆出i禁)ld貫餅3O3蜂 (1001)
勢い 6056.44 4.21レス/分 ネット関係 > 難民
【名無し奥も○○奥も】気楽に井戸端会議11668【みんな来い】 (1001)
勢い 6052.21 4.20レス/分 カテゴリ雑談 > 既婚女性
実質上々42 (1001)
勢い 6007.70 4.17レス/分 ネット関係 > 難民
【ミリシタ】アイドルマスターミリオンライブ! シアターデイズ Part3485 (1001)
勢い 5983.30 4.16レス/分 家電製品 > スマホアプリ
■■速報@ゲーハー板 ver.55185■■ (1001)
勢い 5957.18 4.14レス/分 ゲーム > ハード・業界
六千六百五十 (1001)
勢い 5945.05 4.13レス/分 ネット関係 > 難民
「丸投げしないで」GoTo見直し、知事会で異論相次ぐ(朝日) [蚤の市★] (1001)
勢い 5915.89 4.11レス/分 ニュース > ニュース速報+
■■速報@ゲーハー板 ver.55187■■ (1001)
勢い 5841.31 4.06レス/分 ゲーム > ハード・業界
六千六百四十九 (1001)
勢い 5836.97 4.05レス/分 ネット関係 > 難民
☆ここは売りスレ幼稚園 地下売上議論25138★ (1001)
勢い 5791.07 4.02レス/分 雑談系2 > モ娘(狼)
【芸能】「こんなはずじゃなかった」渡部建が復帰から一転、引退危機も ネット上を中心に「見たくない」「渡部はムリ」 ★2 [首都圏の虎★] (303)
勢い 5779.07 4.01レス/分 ニュース > 芸スポ速報+
【政府】「皇女」制度の創設検討 結婚で皇籍離脱後も公務 ★3 [ばーど★] (103)
勢い 5760.00 4.00レス/分 ニュース > ニュース速報+
【デジタル庁】海外から人材受け入れ 菅首相「世界で活躍できる方」(産経新聞)★2 [少考さん★] (1001)
勢い 5735.21 3.98レス/分 ニュース > ニュース速報+
推しの股下5013m (1001)
勢い 5733.47 3.98レス/分 雑談系2 > なんでもあり
ゲーム芸人フジタ・43歳が結婚相手を募集。 「18〜30歳」「ゲーム部屋に住める」条件に疑問続出 [爆笑ゴリラ★] (1001)
勢い 5624.91 3.91レス/分 ニュース > 芸スポ速報+
安倍晋三「体調が非常に速いスピードで回復。気力がみなぎっている」⇒桜を見る会、安倍事務所が懇親会費用負担判明! ★2 [455169849] (1001)
勢い 5611.14 3.90レス/分 雑談系2 > ニュー速(嫌儲)
ミュ俳優雑談1371 (1001)
勢い 5535.99 3.84レス/分 雑談系2 > なんでもあり
客降りファンサ解禁まであと5014日 (1001)
勢い 5522.36 3.83レス/分 雑談系2 > なんでもあり
【株価】日経平均株価、2万6000円台乗せ 91年6月3日以来、29年5カ月ぶり 11月24日 [ばーど★] (562)
勢い 5456.43 3.79レス/分 ニュース > ニュース速報+
【2020年】「今年の漢字」は?    締切迫る [雷★] (1001)
勢い 5407.72 3.76レス/分 ニュース > ニュース速報+
【韓国】 駐日韓国大使に内定の姜昌一氏 「私を大使として派遣するのは韓日関係改善しようとする韓国政府の強い意志」 [11/23] [荒波φ★] (1002)
勢い 5390.25 3.74レス/分 世界情勢 > 東アジアnews+
【意味深】岡田会長「牧野、リコーダーよかったよ」 (1001)
勢い 5368.88 3.73レス/分 雑談系2 > モ娘(狼)
【国内コロナ】 高齢になるほど致死率が高くなる、19歳以下の死亡はない・・・20代で2人、30代で6人、40代で20人の死亡★3 [どこさ★] (1001)
勢い 5355.19 3.72レス/分 ニュース > ニュース速報+
広告
【野球】巨人、ソフトバンクの“真っ直ぐ”が打てない衝撃 「リアルにロッテより弱い」の声も… [首都圏の虎★] (1001)
勢い 5275.00 3.66レス/分 ニュース > 芸スポ速報+

勢い 5247.21 3.64レス/分 ネット関係 > 難民
亜美の雑談237 (1001)
勢い 5209.08 3.62レス/分 雑談系2 > なんでもあり
【東京地検特捜部】安倍晋三前首相への事情聴取も検討…「桜を見る会」前夜祭会費差額補填巡り ★8 [ばーど★] (1002)
勢い 5206.65 3.62レス/分 ニュース > ニュース速報+
【東京地検特捜部】安倍晋三前首相への事情聴取も検討…「桜を見る会」前夜祭会費差額補填巡り ★9 [potato★] (184)
勢い 5110.13 3.55レス/分 ニュース > ニュース速報+
【名無し奥も○○奥も】気楽に井戸端会議11669【みんな来い】 (1001)
勢い 5107.39 3.55レス/分 カテゴリ雑談 > 既婚女性
【シャニマス】アイドルマスターシャイニーカラーズ1674週目【enza】 (1001)
勢い 5080.86 3.53レス/分 ゲーム > ブラウザゲーム
【デレステ】スターライトステージ★12776 (1001)
勢い 5036.48 3.50レス/分 家電製品 > スマホアプリ
【日本一決定戦】兵庫県民ちょっと来いkskすっぞ【センチュリー】 (742)
勢い 5031.30 3.49レス/分 雑談系2 > ニュー速VIP
☆林美澪ガチ恋道場 地下売上議論25137★ (1001)
勢い 4967.06 3.45レス/分 雑談系2 > モ娘(狼)
実質上々41 (1001)
勢い 4960.22 3.44レス/分 ネット関係 > 難民
【名無し奥も○○奥も】気楽に井戸端会議11673【みんな来い】 (1001)
勢い 4931.36 3.42レス/分 カテゴリ雑談 > 既婚女性
【デジタル庁】海外から人材受け入れ 菅首相「世界で活躍できる方」(産経新聞)★3 [少考さん★] (1001)
勢い 4926.86 3.42レス/分 ニュース > ニュース速報+

勢い 4887.34 3.39レス/分 ネット関係 > 難民
アイドルマスターシンデレラガールズ愚痴スレ6435 (1001)
勢い 4857.69 3.37レス/分 雑談系2 > 最悪
【車】テスラ、後部座席を取り付けずに納車 少なくとも数件 #モデルY [雷★] (128)
勢い 4808.35 3.34レス/分 ニュース > ニュース速報+
【破魔婆出i禁】lD菜し海鮮丼3O3四 (1001)
勢い 4793.61 3.33レス/分 ネット関係 > 難民
【PSO2】PHANTASY STAR ONLINE2【33216】 (1001)
勢い 4784.46 3.32レス/分 ネットゲーム > ネトゲ実況3
ミュ俳優雑談1370 (1001)
勢い 4726.33 3.28レス/分 雑談系2 > なんでもあり
中国人「日本は時間が止まっててある意味新鮮。旅行すると数年前にタイムスリップしたみたい」 (1004)
勢い 4725.00 3.28レス/分 ニュース > ニュース速報

勢い 4708.54 3.27レス/分 ネット関係 > 難民
【速報】連邦政府、バイデン氏に対し政権移行手続きの開始を認める方針を伝える CNN [ばーど★] (583)
勢い 4622.06 3.21レス/分 ニュース > ニュース速報+
【社会】コロナの死者よりも多い自殺者数に海外メディアが驚愕。日本の「メンタルヘルス・パンデミック」 ★3 [首都圏の虎★] (1001)
勢い 4571.72 3.17レス/分 ニュース > ニュース速報+
【モンスト】モンスターストライク3984【総合】 (370)
勢い 4508.89 3.13レス/分 家電製品 > iPhone
スレで意見を出し合って>>1がエロ絵を描いてみるスレ (202)
勢い 4499.30 3.12レス/分 雑談系2 > ニュー速VIP
【急騰】今買えばいい株15436【イエレンが来る】 (550)
勢い 4497.02 3.12レス/分 政治経済 > 株式
実質上々44 (1001)
勢い 4474.90 3.11レス/分 ネット関係 > 難民
Jざつ4386 (1001)
勢い 4453.24 3.09レス/分 ネット関係 > 難民
スレ6434 (1001)
勢い 4445.46 3.09レス/分 雑談系2 > 最悪

カテゴリランキング

ページのトップへ戻る